Handle adding new Tributaries

Removes last_block as an argument from Tendermint. It now loads from the DB as
needed. While slightly less performant, it's easiest and should be fine.
This commit is contained in:
Luke Parker 2023-04-23 03:48:50 -04:00
parent bf9ec410db
commit 2b09309adc
No known key found for this signature in database
8 changed files with 149 additions and 80 deletions

1
Cargo.lock generated
View file

@ -1309,6 +1309,7 @@ dependencies = [
"blake2", "blake2",
"ciphersuite", "ciphersuite",
"flexible-transcript", "flexible-transcript",
"lazy_static",
"log", "log",
"modular-frost", "modular-frost",
"parity-scale-codec", "parity-scale-codec",

View file

@ -15,6 +15,7 @@ rustdoc-args = ["--cfg", "docsrs"]
[dependencies] [dependencies]
async-trait = "0.1" async-trait = "0.1"
lazy_static = "1"
zeroize = "^1.5" zeroize = "^1.5"
rand_core = "0.6" rand_core = "0.6"

View file

@ -3,7 +3,11 @@
#![allow(unreachable_code)] #![allow(unreachable_code)]
#![allow(clippy::diverging_sub_expression)] #![allow(clippy::diverging_sub_expression)]
use std::{time::Duration, collections::HashMap}; use std::{
sync::Arc,
time::Duration,
collections::{VecDeque, HashMap},
};
use zeroize::Zeroizing; use zeroize::Zeroizing;
@ -12,9 +16,12 @@ use ciphersuite::{group::ff::Field, Ciphersuite, Ristretto};
use serai_db::{Db, MemDb}; use serai_db::{Db, MemDb};
use serai_client::Serai; use serai_client::Serai;
use tokio::time::sleep; use tokio::{sync::RwLock, time::sleep};
use ::tributary::Tributary;
mod tributary; mod tributary;
use crate::tributary::{TributarySpec, Transaction};
mod p2p; mod p2p;
pub use p2p::*; pub use p2p::*;
@ -27,6 +34,13 @@ mod substrate;
#[cfg(test)] #[cfg(test)]
pub mod tests; pub mod tests;
// This is a static to satisfy lifetime expectations
lazy_static::lazy_static! {
static ref NEW_TRIBUTARIES: Arc<RwLock<VecDeque<TributarySpec>>> = Arc::new(
RwLock::new(VecDeque::new())
);
}
async fn run<D: Db, Pro: Processor, P: P2p>( async fn run<D: Db, Pro: Processor, P: P2p>(
raw_db: D, raw_db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>, key: Zeroizing<<Ristretto as Ciphersuite>::F>,
@ -34,11 +48,17 @@ async fn run<D: Db, Pro: Processor, P: P2p>(
mut processor: Pro, mut processor: Pro,
serai: Serai, serai: Serai,
) { ) {
let mut substrate_db = substrate::SubstrateDb::new(raw_db.clone()); let add_new_tributary = |spec: TributarySpec| async {
let mut last_substrate_block = substrate_db.last_block(); NEW_TRIBUTARIES.write().await.push_back(spec);
let mut last_tributary_block = HashMap::<[u8; 32], _>::new(); // TODO: Save this tributary's information to the databae before returning
};
{ {
let mut substrate_db = substrate::SubstrateDb::new(raw_db.clone());
let mut last_substrate_block = substrate_db.last_block();
let p2p = p2p.clone();
let key = key.clone(); let key = key.clone();
let mut processor = processor.clone(); let mut processor = processor.clone();
tokio::spawn(async move { tokio::spawn(async move {
@ -46,6 +66,7 @@ async fn run<D: Db, Pro: Processor, P: P2p>(
match substrate::handle_new_blocks( match substrate::handle_new_blocks(
&mut substrate_db, &mut substrate_db,
&key, &key,
add_new_tributary,
&p2p, &p2p,
&mut processor, &mut processor,
&serai, &serai,
@ -64,20 +85,62 @@ async fn run<D: Db, Pro: Processor, P: P2p>(
} }
{ {
let mut tributary_db = tributary::TributaryDb::new(raw_db); struct ActiveTributary<D: Db, P: P2p> {
spec: TributarySpec,
tributary: Tributary<D, Transaction, P>,
}
let mut tributaries = HashMap::<[u8; 32], ActiveTributary<D, P>>::new();
async fn add_tributary<D: Db, P: P2p>(
db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
p2p: P,
tributaries: &mut HashMap<[u8; 32], ActiveTributary<D, P>>,
spec: TributarySpec,
) {
let tributary = Tributary::<_, Transaction, _>::new(
db,
spec.genesis(),
spec.start_time(),
key,
spec.validators(),
p2p,
)
.await
.unwrap();
tributaries.insert(tributary.genesis(), ActiveTributary { spec, tributary });
}
// TODO: Reload tributaries
let mut tributary_db = tributary::TributaryDb::new(raw_db.clone());
tokio::spawn(async move { tokio::spawn(async move {
loop { loop {
for (_, last_block) in last_tributary_block.iter_mut() { // The following handle_new_blocks function may take an arbitrary amount of time
// If registering a new tributary waited for a lock on the tributaries table, the substrate
// scanner may wait on a lock for an arbitrary amount of time
// By instead using the distinct NEW_TRIBUTARIES, there should be minimal
// competition/blocking
{
let mut new_tributaries = NEW_TRIBUTARIES.write().await;
while let Some(spec) = new_tributaries.pop_front() {
add_tributary(raw_db.clone(), key.clone(), p2p.clone(), &mut tributaries, spec).await;
}
}
for (genesis, ActiveTributary { spec, tributary }) in tributaries.iter_mut() {
tributary::scanner::handle_new_blocks::<_, _, P>( tributary::scanner::handle_new_blocks::<_, _, P>(
&mut tributary_db, &mut tributary_db,
&key, &key,
&mut processor, &mut processor,
todo!(), spec,
todo!(), tributary,
last_block,
) )
.await; .await;
} }
sleep(Duration::from_secs(3)).await; sleep(Duration::from_secs(3)).await;
} }
}); });

View file

@ -1,4 +1,4 @@
use core::ops::Deref; use core::{ops::Deref, future::Future};
use std::collections::{HashSet, HashMap}; use std::collections::{HashSet, HashMap};
use zeroize::Zeroizing; use zeroize::Zeroizing;
@ -19,8 +19,6 @@ use serai_client::{
use serai_db::DbTxn; use serai_db::DbTxn;
use tributary::Tributary;
use processor_messages::{SubstrateContext, key_gen::KeyGenId, CoordinatorMessage}; use processor_messages::{SubstrateContext, key_gen::KeyGenId, CoordinatorMessage};
use crate::{Db, P2p, processor::Processor, tributary::TributarySpec}; use crate::{Db, P2p, processor::Processor, tributary::TributarySpec};
@ -40,10 +38,15 @@ async fn in_set(
Ok(Some(data.participants.iter().any(|(participant, _)| participant.0 == key))) Ok(Some(data.participants.iter().any(|(participant, _)| participant.0 == key)))
} }
async fn handle_new_set<D: Db, Pro: Processor, P: P2p>( async fn handle_new_set<
D: Db,
Fut: Future<Output = ()>,
ANT: Clone + Fn(TributarySpec) -> Fut,
Pro: Processor,
>(
db: D, db: D,
key: &Zeroizing<<Ristretto as Ciphersuite>::F>, key: &Zeroizing<<Ristretto as Ciphersuite>::F>,
p2p: &P, add_new_tributary: ANT,
processor: &mut Pro, processor: &mut Pro,
serai: &Serai, serai: &Serai,
block: &Block, block: &Block,
@ -53,24 +56,14 @@ async fn handle_new_set<D: Db, Pro: Processor, P: P2p>(
let set_data = serai.get_validator_set(set).await?.expect("NewSet for set which doesn't exist"); let set_data = serai.get_validator_set(set).await?.expect("NewSet for set which doesn't exist");
let spec = TributarySpec::new(block.hash(), block.time().unwrap(), set, set_data); let spec = TributarySpec::new(block.hash(), block.time().unwrap(), set, set_data);
add_new_tributary(spec.clone());
// TODO: Do something with this
let tributary = Tributary::<_, crate::tributary::Transaction, _>::new(
db,
spec.genesis(),
spec.start_time(),
key.clone(),
spec.validators(),
p2p.clone(),
)
.await
.unwrap();
// Trigger a DKG // Trigger a DKG
// TODO: Check how the processor handles this being fired multiple times // TODO: Check how the processor handles this being fired multiple times
// We already have a unique event ID based on block, event index (where event index is // We already have a unique event ID based on block, event index (where event index is
// the one generated in this handle_block function) // the one generated in this handle_block function)
// We could use that on this end and the processor end? // We could use that on this end and the processor end?
// TODO: Should this be handled in the Tributary code?
processor processor
.send(CoordinatorMessage::KeyGen( .send(CoordinatorMessage::KeyGen(
processor_messages::key_gen::CoordinatorMessage::GenerateKey { processor_messages::key_gen::CoordinatorMessage::GenerateKey {
@ -214,9 +207,16 @@ async fn handle_batch_and_burns<Pro: Processor>(
// Handle a specific Substrate block, returning an error when it fails to get data // Handle a specific Substrate block, returning an error when it fails to get data
// (not blocking / holding) // (not blocking / holding)
async fn handle_block<D: Db, Pro: Processor, P: P2p>( async fn handle_block<
D: Db,
Fut: Future<Output = ()>,
ANT: Clone + Fn(TributarySpec) -> Fut,
Pro: Processor,
P: P2p,
>(
db: &mut SubstrateDb<D>, db: &mut SubstrateDb<D>,
key: &Zeroizing<<Ristretto as Ciphersuite>::F>, key: &Zeroizing<<Ristretto as Ciphersuite>::F>,
add_new_tributary: ANT,
p2p: &P, p2p: &P,
processor: &mut Pro, processor: &mut Pro,
serai: &Serai, serai: &Serai,
@ -236,7 +236,8 @@ async fn handle_block<D: Db, Pro: Processor, P: P2p>(
if !SubstrateDb::<D>::handled_event(&db.0, hash, event_id) { if !SubstrateDb::<D>::handled_event(&db.0, hash, event_id) {
if let ValidatorSetsEvent::NewSet { set } = new_set { if let ValidatorSetsEvent::NewSet { set } = new_set {
// TODO2: Use a DB on a dedicated volume // TODO2: Use a DB on a dedicated volume
handle_new_set(db.0.clone(), key, p2p, processor, serai, &block, set).await?; handle_new_set(db.0.clone(), key, add_new_tributary.clone(), processor, serai, &block, set)
.await?;
} else { } else {
panic!("NewSet event wasn't NewSet: {new_set:?}"); panic!("NewSet event wasn't NewSet: {new_set:?}");
} }
@ -277,9 +278,16 @@ async fn handle_block<D: Db, Pro: Processor, P: P2p>(
Ok(()) Ok(())
} }
pub async fn handle_new_blocks<D: Db, Pro: Processor, P: P2p>( pub async fn handle_new_blocks<
D: Db,
Fut: Future<Output = ()>,
ANT: Clone + Fn(TributarySpec) -> Fut,
Pro: Processor,
P: P2p,
>(
db: &mut SubstrateDb<D>, db: &mut SubstrateDb<D>,
key: &Zeroizing<<Ristretto as Ciphersuite>::F>, key: &Zeroizing<<Ristretto as Ciphersuite>::F>,
add_new_tributary: ANT,
p2p: &P, p2p: &P,
processor: &mut Pro, processor: &mut Pro,
serai: &Serai, serai: &Serai,
@ -297,6 +305,7 @@ pub async fn handle_new_blocks<D: Db, Pro: Processor, P: P2p>(
handle_block( handle_block(
db, db,
key, key,
add_new_tributary.clone(),
p2p, p2p,
processor, processor,
serai, serai,

View file

@ -78,35 +78,25 @@ async fn dkg_test() {
key: &Zeroizing<<Ristretto as Ciphersuite>::F>, key: &Zeroizing<<Ristretto as Ciphersuite>::F>,
spec: &TributarySpec, spec: &TributarySpec,
tributary: &Tributary<MemDb, Transaction, LocalP2p>, tributary: &Tributary<MemDb, Transaction, LocalP2p>,
) -> (TributaryDb<MemDb>, MemProcessor, [u8; 32]) { ) -> (TributaryDb<MemDb>, MemProcessor) {
let mut scanner_db = TributaryDb(MemDb::new()); let mut scanner_db = TributaryDb(MemDb::new());
let mut processor = MemProcessor::new(); let mut processor = MemProcessor::new();
let mut last_block = tributary.genesis(); handle_new_blocks(&mut scanner_db, key, &mut processor, spec, tributary).await;
handle_new_blocks(&mut scanner_db, key, &mut processor, spec, tributary, &mut last_block).await; (scanner_db, processor)
assert!(last_block != tributary.genesis());
(scanner_db, processor, last_block)
} }
// Instantiate a scanner and verify it has nothing to report // Instantiate a scanner and verify it has nothing to report
let (mut scanner_db, mut processor, mut last_block) = let (mut scanner_db, mut processor) = new_processor(&keys[0], &spec, &tributaries[0].1).await;
new_processor(&keys[0], &spec, &tributaries[0].1).await;
assert!(processor.0.read().unwrap().is_empty()); assert!(processor.0.read().unwrap().is_empty());
// Publish the last commitment // Publish the last commitment
let block_before_tx = tributaries[0].1.tip();
assert!(tributaries[0].1.add_transaction(txs[0].clone()).await); assert!(tributaries[0].1.add_transaction(txs[0].clone()).await);
wait_for_tx_inclusion(&tributaries[0].1, last_block, txs[0].hash()).await; wait_for_tx_inclusion(&tributaries[0].1, block_before_tx, txs[0].hash()).await;
sleep(Duration::from_secs(Tributary::<MemDb, Transaction, LocalP2p>::block_time().into())).await; sleep(Duration::from_secs(Tributary::<MemDb, Transaction, LocalP2p>::block_time().into())).await;
// Verify the scanner emits a KeyGen::Commitments message // Verify the scanner emits a KeyGen::Commitments message
handle_new_blocks( handle_new_blocks(&mut scanner_db, &keys[0], &mut processor, &spec, &tributaries[0].1).await;
&mut scanner_db,
&keys[0],
&mut processor,
&spec,
&tributaries[0].1,
&mut last_block,
)
.await;
{ {
let mut msgs = processor.0.write().unwrap(); let mut msgs = processor.0.write().unwrap();
assert_eq!(msgs.pop_front().unwrap(), expected_commitments); assert_eq!(msgs.pop_front().unwrap(), expected_commitments);
@ -115,7 +105,7 @@ async fn dkg_test() {
// Verify all keys exhibit this scanner behavior // Verify all keys exhibit this scanner behavior
for (i, key) in keys.iter().enumerate() { for (i, key) in keys.iter().enumerate() {
let (_, processor, _) = new_processor(key, &spec, &tributaries[i].1).await; let (_, processor) = new_processor(key, &spec, &tributaries[i].1).await;
let mut msgs = processor.0.write().unwrap(); let mut msgs = processor.0.write().unwrap();
assert_eq!(msgs.pop_front().unwrap(), expected_commitments); assert_eq!(msgs.pop_front().unwrap(), expected_commitments);
assert!(msgs.is_empty()); assert!(msgs.is_empty());
@ -147,20 +137,13 @@ async fn dkg_test() {
} }
// With just 4 sets of shares, nothing should happen yet // With just 4 sets of shares, nothing should happen yet
handle_new_blocks( handle_new_blocks(&mut scanner_db, &keys[0], &mut processor, &spec, &tributaries[0].1).await;
&mut scanner_db,
&keys[0],
&mut processor,
&spec,
&tributaries[0].1,
&mut last_block,
)
.await;
assert!(processor.0.write().unwrap().is_empty()); assert!(processor.0.write().unwrap().is_empty());
// Publish the final set of shares // Publish the final set of shares
let block_before_tx = tributaries[0].1.tip();
assert!(tributaries[0].1.add_transaction(txs[0].clone()).await); assert!(tributaries[0].1.add_transaction(txs[0].clone()).await);
wait_for_tx_inclusion(&tributaries[0].1, last_block, txs[0].hash()).await; wait_for_tx_inclusion(&tributaries[0].1, block_before_tx, txs[0].hash()).await;
sleep(Duration::from_secs(Tributary::<MemDb, Transaction, LocalP2p>::block_time().into())).await; sleep(Duration::from_secs(Tributary::<MemDb, Transaction, LocalP2p>::block_time().into())).await;
// Each scanner should emit a distinct shares message // Each scanner should emit a distinct shares message
@ -185,15 +168,7 @@ async fn dkg_test() {
}; };
// Any scanner which has handled the prior blocks should only emit the new event // Any scanner which has handled the prior blocks should only emit the new event
handle_new_blocks( handle_new_blocks(&mut scanner_db, &keys[0], &mut processor, &spec, &tributaries[0].1).await;
&mut scanner_db,
&keys[0],
&mut processor,
&spec,
&tributaries[0].1,
&mut last_block,
)
.await;
{ {
let mut msgs = processor.0.write().unwrap(); let mut msgs = processor.0.write().unwrap();
assert_eq!(msgs.pop_front().unwrap(), shares_for(0)); assert_eq!(msgs.pop_front().unwrap(), shares_for(0));
@ -202,7 +177,7 @@ async fn dkg_test() {
// Yet new scanners should emit all events // Yet new scanners should emit all events
for (i, key) in keys.iter().enumerate() { for (i, key) in keys.iter().enumerate() {
let (_, processor, _) = new_processor(key, &spec, &tributaries[i].1).await; let (_, processor) = new_processor(key, &spec, &tributaries[i].1).await;
let mut msgs = processor.0.write().unwrap(); let mut msgs = processor.0.write().unwrap();
assert_eq!(msgs.pop_front().unwrap(), expected_commitments); assert_eq!(msgs.pop_front().unwrap(), expected_commitments);
assert_eq!(msgs.pop_front().unwrap(), shares_for(i)); assert_eq!(msgs.pop_front().unwrap(), shares_for(i));

View file

@ -15,6 +15,7 @@ pub use chain::*;
mod tx; mod tx;
mod dkg; mod dkg;
// TODO: Test the other transactions
fn random_u32<R: RngCore>(rng: &mut R) -> u32 { fn random_u32<R: RngCore>(rng: &mut R) -> u32 {
u32::try_from(rng.next_u64() >> 32).unwrap() u32::try_from(rng.next_u64() >> 32).unwrap()

View file

@ -24,7 +24,7 @@ impl<D: Db> TributaryDb<D> {
txn.commit(); txn.commit();
} }
pub fn last_block(&self, genesis: [u8; 32]) -> [u8; 32] { pub fn last_block(&self, genesis: [u8; 32]) -> [u8; 32] {
self.0.get(Self::block_key(genesis)).unwrap_or(genesis.to_vec()).try_into().unwrap() self.0.get(Self::block_key(genesis)).map(|last| last.try_into().unwrap()).unwrap_or(genesis)
} }
// This shouldn't need genesis? Yet it's saner to have then quibble about. // This shouldn't need genesis? Yet it's saner to have then quibble about.

View file

@ -1,5 +1,5 @@
use core::ops::Deref; use core::ops::Deref;
use std::collections::HashMap; use std::collections::{VecDeque, HashMap};
use zeroize::Zeroizing; use zeroize::Zeroizing;
@ -296,25 +296,44 @@ pub async fn handle_new_blocks<D: Db, Pro: Processor, P: P2p>(
processor: &mut Pro, processor: &mut Pro,
spec: &TributarySpec, spec: &TributarySpec,
tributary: &Tributary<D, Transaction, P>, tributary: &Tributary<D, Transaction, P>,
last_block: &mut [u8; 32],
) { ) {
let last_block = db.last_block(tributary.genesis());
// Check if there's been a new Tributary block // Check if there's been a new Tributary block
let latest = tributary.tip(); let latest = tributary.tip();
if latest == *last_block { if latest == last_block {
return; return;
} }
// TODO: Only handle n blocks at a time. let mut blocks = VecDeque::new();
// This may load the entire chain into RAM as-is. // This is a new block, as per the prior if check
let mut blocks = vec![tributary.block(&latest).unwrap()]; blocks.push_back(tributary.block(&latest).unwrap());
while blocks.last().unwrap().parent() != *last_block {
blocks.push(tributary.block(&blocks.last().unwrap().parent()).unwrap()); let mut block = None;
while {
let parent = blocks.back().unwrap().parent();
// If the parent is the genesis, we've reached the end
if parent == tributary.genesis() {
false
} else {
// Get this block
block = Some(tributary.block(&parent).unwrap());
// If it's the last block we've scanned, it's the end. Else, push it
block.as_ref().unwrap().hash() != last_block
}
} {
blocks.push_back(block.take().unwrap());
// Prevent this from loading the entire chain into RAM by setting a limit of 1000 blocks at a
// time (roughly 350 MB under the current block size limit)
if blocks.len() > 1000 {
blocks.pop_front();
}
} }
while let Some(block) = blocks.pop() { while let Some(block) = blocks.pop_back() {
let hash = block.hash(); let hash = block.hash();
handle_block(db, key, processor, spec, tributary, block).await; handle_block(db, key, processor, spec, tributary, block).await;
*last_block = hash; db.set_last_block(tributary.genesis(), hash);
db.set_last_block(tributary.genesis(), *last_block);
} }
} }