mirror of
https://github.com/serai-dex/serai.git
synced 2025-01-18 08:45:00 +00:00
Add a batch verified DLEq
The batch verified one offers ~23% faster verification. While this massively refactors for modularity, I'm still not happy with the DLEq proofs at the top level, nor am I happy with the AOS signatures. I'll work on cleaning them up more later.
This commit is contained in:
parent
fe9a8d9495
commit
26cee46950
11 changed files with 1031 additions and 475 deletions
|
@ -19,7 +19,7 @@ transcript = { package = "flexible-transcript", path = "../transcript", version
|
|||
ff = "0.12"
|
||||
group = "0.12"
|
||||
|
||||
multiexp = { path = "../multiexp", optional = true }
|
||||
multiexp = { path = "../multiexp", features = ["batch"], optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
hex-literal = "0.3"
|
||||
|
@ -33,8 +33,8 @@ transcript = { package = "flexible-transcript", path = "../transcript", features
|
|||
|
||||
[features]
|
||||
serialize = []
|
||||
cross_group = []
|
||||
cross_group = ["multiexp"]
|
||||
secure_capacity_difference = []
|
||||
|
||||
# These only apply to cross_group, yet are default to ensure its integrity and performance
|
||||
default = ["secure_capacity_difference", "multiexp"]
|
||||
# Only applies to cross_group, yet is default to ensure security
|
||||
default = ["secure_capacity_difference"]
|
||||
|
|
141
crypto/dleq/src/cross_group/bits.rs
Normal file
141
crypto/dleq/src/cross_group/bits.rs
Normal file
|
@ -0,0 +1,141 @@
|
|||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use transcript::Transcript;
|
||||
|
||||
use group::{ff::PrimeFieldBits, prime::PrimeGroup};
|
||||
|
||||
use crate::{Generators, cross_group::DLEqError};
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
use std::io::{Read, Write};
|
||||
#[cfg(feature = "serialize")]
|
||||
use crate::cross_group::read_point;
|
||||
|
||||
pub trait RingSignature<G0: PrimeGroup, G1: PrimeGroup>: Sized {
|
||||
type Context;
|
||||
|
||||
const LEN: usize;
|
||||
|
||||
fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
ring: &[(G0, G1)],
|
||||
actual: usize,
|
||||
blinding_key: (G0::Scalar, G1::Scalar)
|
||||
) -> Self;
|
||||
|
||||
fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
transcript: T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
context: &mut Self::Context,
|
||||
ring: &[(G0, G1)]
|
||||
) -> Result<(), DLEqError>;
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()>;
|
||||
#[cfg(feature = "serialize")]
|
||||
fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self>;
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub(crate) struct Bits<G0: PrimeGroup, G1: PrimeGroup, RING: RingSignature<G0, G1>> {
|
||||
pub(crate) commitments: (G0, G1),
|
||||
signature: RING
|
||||
}
|
||||
|
||||
impl<G0: PrimeGroup, G1: PrimeGroup, RING: RingSignature<G0, G1>> Bits<G0, G1, RING>
|
||||
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
fn transcript<T: Transcript>(transcript: &mut T, i: usize, commitments: (G0, G1)) {
|
||||
if i == 0 {
|
||||
transcript.domain_separate(b"cross_group_dleq");
|
||||
}
|
||||
transcript.append_message(b"bit_group", &u16::try_from(i).unwrap().to_le_bytes());
|
||||
transcript.append_message(b"commitment_0", commitments.0.to_bytes().as_ref());
|
||||
transcript.append_message(b"commitment_1", commitments.1.to_bytes().as_ref());
|
||||
}
|
||||
|
||||
fn ring(pow_2: (G0, G1), commitments: (G0, G1)) -> Vec<(G0, G1)> {
|
||||
let mut res = vec![(G0::identity(), G1::identity()); RING::LEN];
|
||||
res[RING::LEN - 1] = commitments;
|
||||
for i in (0 .. (RING::LEN - 1)).rev() {
|
||||
res[i] = (res[i + 1].0 - pow_2.0, res[i + 1].1 - pow_2.1);
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
fn shift(pow_2: &mut (G0, G1)) {
|
||||
pow_2.0 = pow_2.0.double();
|
||||
pow_2.1 = pow_2.1.double();
|
||||
if RING::LEN == 4 {
|
||||
pow_2.0 = pow_2.0.double();
|
||||
pow_2.1 = pow_2.1.double();
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
i: usize,
|
||||
pow_2: &mut (G0, G1),
|
||||
bits: u8,
|
||||
blinding_key: (G0::Scalar, G1::Scalar)
|
||||
) -> Self {
|
||||
debug_assert!((RING::LEN == 2) || (RING::LEN == 4));
|
||||
|
||||
let mut commitments = (
|
||||
(generators.0.alt * blinding_key.0),
|
||||
(generators.1.alt * blinding_key.1)
|
||||
);
|
||||
commitments.0 += pow_2.0 * G0::Scalar::from(bits.into());
|
||||
commitments.1 += pow_2.1 * G1::Scalar::from(bits.into());
|
||||
Self::transcript(transcript, i, commitments);
|
||||
|
||||
let ring = Self::ring(*pow_2, commitments);
|
||||
// Invert the index to get the raw blinding key's position in the ring
|
||||
let actual = RING::LEN - 1 - usize::from(bits);
|
||||
let signature = RING::prove(rng, transcript.clone(), generators, &ring, actual, blinding_key);
|
||||
|
||||
Self::shift(pow_2);
|
||||
Bits { commitments, signature }
|
||||
}
|
||||
|
||||
pub(crate) fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
context: &mut RING::Context,
|
||||
i: usize,
|
||||
pow_2: &mut (G0, G1)
|
||||
) -> Result<(), DLEqError> {
|
||||
debug_assert!((RING::LEN == 2) || (RING::LEN == 4));
|
||||
|
||||
Self::transcript(transcript, i, self.commitments);
|
||||
self.signature.verify(
|
||||
rng,
|
||||
transcript.clone(),
|
||||
generators,
|
||||
context,
|
||||
&Self::ring(*pow_2, self.commitments)
|
||||
)?;
|
||||
|
||||
Self::shift(pow_2);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub(crate) fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
|
||||
w.write_all(self.commitments.0.to_bytes().as_ref())?;
|
||||
w.write_all(self.commitments.1.to_bytes().as_ref())?;
|
||||
self.signature.serialize(w)
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub(crate) fn deserialize<Re: Read>(r: &mut Re) -> std::io::Result<Self> {
|
||||
Ok(Bits { commitments: (read_point(r)?, read_point(r)?), signature: RING::deserialize(r)? })
|
||||
}
|
||||
}
|
278
crypto/dleq/src/cross_group/linear/aos.rs
Normal file
278
crypto/dleq/src/cross_group/linear/aos.rs
Normal file
|
@ -0,0 +1,278 @@
|
|||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use subtle::{ConstantTimeEq, ConditionallySelectable};
|
||||
|
||||
use transcript::Transcript;
|
||||
|
||||
use group::{ff::{Field, PrimeFieldBits}, prime::PrimeGroup};
|
||||
|
||||
use multiexp::BatchVerifier;
|
||||
|
||||
use crate::{
|
||||
Generators,
|
||||
cross_group::{DLEqError, scalar::{scalar_convert, mutual_scalar_from_bytes}, bits::RingSignature}
|
||||
};
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
use std::io::{Read, Write};
|
||||
#[cfg(feature = "serialize")]
|
||||
use ff::PrimeField;
|
||||
#[cfg(feature = "serialize")]
|
||||
use crate::{read_scalar, cross_group::read_point};
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn nonces<
|
||||
T: Transcript,
|
||||
G0: PrimeGroup,
|
||||
G1: PrimeGroup
|
||||
>(mut transcript: T, nonces: (G0, G1)) -> (G0::Scalar, G1::Scalar)
|
||||
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
transcript.append_message(b"nonce_0", nonces.0.to_bytes().as_ref());
|
||||
transcript.append_message(b"nonce_1", nonces.1.to_bytes().as_ref());
|
||||
mutual_scalar_from_bytes(transcript.challenge(b"challenge").as_ref())
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn calculate_R<G0: PrimeGroup, G1: PrimeGroup>(
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
s: (G0::Scalar, G1::Scalar),
|
||||
A: (G0, G1),
|
||||
e: (G0::Scalar, G1::Scalar)
|
||||
) -> (G0, G1) {
|
||||
(((generators.0.alt * s.0) - (A.0 * e.0)), ((generators.1.alt * s.1) - (A.1 * e.1)))
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn R_nonces<T: Transcript, G0: PrimeGroup, G1: PrimeGroup>(
|
||||
transcript: T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
s: (G0::Scalar, G1::Scalar),
|
||||
A: (G0, G1),
|
||||
e: (G0::Scalar, G1::Scalar)
|
||||
) -> (G0::Scalar, G1::Scalar) where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
nonces(transcript, calculate_R(generators, s, A, e))
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct ClassicAos<G0: PrimeGroup, G1: PrimeGroup, const RING_LEN: usize> {
|
||||
// Merged challenges have a slight security reduction, yet one already applied to the scalar
|
||||
// being proven for, and this saves ~8kb. Alternatively, challenges could be redefined as a seed,
|
||||
// present here, which is then hashed for each of the two challenges, remaining unbiased/unique
|
||||
// while maintaining the bandwidth savings, yet also while adding 252 hashes for
|
||||
// Secp256k1/Ed25519
|
||||
e_0: G0::Scalar,
|
||||
s: [(G0::Scalar, G1::Scalar); RING_LEN]
|
||||
}
|
||||
|
||||
impl<
|
||||
G0: PrimeGroup,
|
||||
G1: PrimeGroup,
|
||||
const RING_LEN: usize
|
||||
> RingSignature<G0, G1> for ClassicAos<G0, G1, RING_LEN>
|
||||
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
type Context = ();
|
||||
|
||||
const LEN: usize = RING_LEN;
|
||||
|
||||
fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
ring: &[(G0, G1)],
|
||||
actual: usize,
|
||||
blinding_key: (G0::Scalar, G1::Scalar)
|
||||
) -> Self {
|
||||
// While it is possible to use larger values, it's not efficient to do so
|
||||
// 2 + 2 == 2^2, yet 2 + 2 + 2 < 2^3
|
||||
debug_assert!((RING_LEN == 2) || (RING_LEN == 4));
|
||||
|
||||
let mut e_0 = G0::Scalar::zero();
|
||||
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); RING_LEN];
|
||||
|
||||
let r = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
|
||||
#[allow(non_snake_case)]
|
||||
let original_R = (generators.0.alt * r.0, generators.1.alt * r.1);
|
||||
#[allow(non_snake_case)]
|
||||
let mut R = original_R;
|
||||
|
||||
for i in ((actual + 1) .. (actual + RING_LEN + 1)).map(|i| i % RING_LEN) {
|
||||
let e = nonces(transcript.clone(), R);
|
||||
e_0 = G0::Scalar::conditional_select(&e_0, &e.0, usize::ct_eq(&i, &0));
|
||||
|
||||
// Solve for the real index
|
||||
if i == actual {
|
||||
s[i] = (r.0 + (e.0 * blinding_key.0), r.1 + (e.1 * blinding_key.1));
|
||||
debug_assert_eq!(calculate_R(generators, s[i], ring[actual], e), original_R);
|
||||
break;
|
||||
// Generate a decoy response
|
||||
} else {
|
||||
s[i] = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
|
||||
}
|
||||
|
||||
R = calculate_R(generators, s[i], ring[i], e);
|
||||
}
|
||||
|
||||
ClassicAos { e_0, s }
|
||||
}
|
||||
|
||||
fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
&self,
|
||||
_rng: &mut R,
|
||||
transcript: T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
_: &mut Self::Context,
|
||||
ring: &[(G0, G1)]
|
||||
) -> Result<(), DLEqError> {
|
||||
debug_assert!((RING_LEN == 2) || (RING_LEN == 4));
|
||||
|
||||
let e_0 = (self.e_0, scalar_convert(self.e_0).ok_or(DLEqError::InvalidChallenge)?);
|
||||
let mut e = None;
|
||||
for i in 0 .. RING_LEN {
|
||||
e = Some(R_nonces(transcript.clone(), generators, self.s[i], ring[i], e.unwrap_or(e_0)));
|
||||
}
|
||||
|
||||
// Will panic if the above loop is never run somehow
|
||||
// If e wasn't an Option, and instead initially set to e_0, it'd always pass
|
||||
if e_0 != e.unwrap() {
|
||||
Err(DLEqError::InvalidProof)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
|
||||
w.write_all(self.e_0.to_repr().as_ref())?;
|
||||
for i in 0 .. Self::LEN {
|
||||
w.write_all(self.s[i].0.to_repr().as_ref())?;
|
||||
w.write_all(self.s[i].1.to_repr().as_ref())?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
|
||||
let e_0 = read_scalar(r)?;
|
||||
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); RING_LEN];
|
||||
for i in 0 .. Self::LEN {
|
||||
s[i] = (read_scalar(r)?, read_scalar(r)?);
|
||||
}
|
||||
Ok(ClassicAos { e_0, s })
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct MultiexpAos<G0: PrimeGroup, G1: PrimeGroup> {
|
||||
R_0: (G0, G1),
|
||||
s: [(G0::Scalar, G1::Scalar); 2]
|
||||
}
|
||||
|
||||
impl<G0: PrimeGroup, G1: PrimeGroup> MultiexpAos<G0, G1> {
|
||||
#[allow(non_snake_case)]
|
||||
fn R_batch(
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
s: (G0::Scalar, G1::Scalar),
|
||||
A: (G0, G1),
|
||||
e: (G0::Scalar, G1::Scalar)
|
||||
) -> (Vec<(G0::Scalar, G0)>, Vec<(G1::Scalar, G1)>) {
|
||||
(vec![(s.0, generators.0.alt), (-e.0, A.0)], vec![(s.1, generators.1.alt), (-e.1, A.1)])
|
||||
}
|
||||
}
|
||||
|
||||
impl<G0: PrimeGroup, G1: PrimeGroup> RingSignature<G0, G1> for MultiexpAos<G0, G1>
|
||||
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
type Context = (BatchVerifier<(), G0>, BatchVerifier<(), G1>);
|
||||
|
||||
const LEN: usize = 2;
|
||||
|
||||
fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
ring: &[(G0, G1)],
|
||||
actual: usize,
|
||||
blinding_key: (G0::Scalar, G1::Scalar)
|
||||
) -> Self {
|
||||
#[allow(non_snake_case)]
|
||||
let mut R_0 = (G0::identity(), G1::identity());
|
||||
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); 2]; // Can't use Self::LEN due to 76200
|
||||
|
||||
let r = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
|
||||
#[allow(non_snake_case)]
|
||||
let original_R = (generators.0.alt * r.0, generators.1.alt * r.1);
|
||||
#[allow(non_snake_case)]
|
||||
let mut R = original_R;
|
||||
|
||||
for i in ((actual + 1) .. (actual + Self::LEN + 1)).map(|i| i % Self::LEN) {
|
||||
if i == 0 {
|
||||
R_0.0 = R.0;
|
||||
R_0.1 = R.1;
|
||||
}
|
||||
|
||||
// Solve for the real index
|
||||
let e = nonces(transcript.clone(), R);
|
||||
if i == actual {
|
||||
s[i] = (r.0 + (e.0 * blinding_key.0), r.1 + (e.1 * blinding_key.1));
|
||||
debug_assert_eq!(calculate_R(generators, s[i], ring[actual], e), original_R);
|
||||
break;
|
||||
// Generate a decoy response
|
||||
} else {
|
||||
s[i] = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
|
||||
}
|
||||
|
||||
R = calculate_R(generators, s[i], ring[i], e);
|
||||
}
|
||||
|
||||
MultiexpAos { R_0, s }
|
||||
}
|
||||
|
||||
fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
transcript: T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
batch: &mut Self::Context,
|
||||
ring: &[(G0, G1)]
|
||||
) -> Result<(), DLEqError> {
|
||||
let mut e = nonces(transcript.clone(), self.R_0);
|
||||
for i in 0 .. (Self::LEN - 1) {
|
||||
e = R_nonces(transcript.clone(), generators, self.s[i], ring[i], e);
|
||||
}
|
||||
|
||||
let mut statements = Self::R_batch(
|
||||
generators,
|
||||
*self.s.last().unwrap(),
|
||||
*ring.last().unwrap(),
|
||||
e
|
||||
);
|
||||
statements.0.push((-G0::Scalar::one(), self.R_0.0));
|
||||
statements.1.push((-G1::Scalar::one(), self.R_0.1));
|
||||
batch.0.queue(&mut *rng, (), statements.0);
|
||||
batch.1.queue(&mut *rng, (), statements.1);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
|
||||
w.write_all(self.R_0.0.to_bytes().as_ref())?;
|
||||
w.write_all(self.R_0.1.to_bytes().as_ref())?;
|
||||
for i in 0 .. Self::LEN {
|
||||
w.write_all(self.s[i].0.to_repr().as_ref())?;
|
||||
w.write_all(self.s[i].1.to_repr().as_ref())?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
|
||||
#[allow(non_snake_case)]
|
||||
let R_0 = (read_point(r)?, read_point(r)?);
|
||||
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); 2];
|
||||
for i in 0 .. Self::LEN {
|
||||
s[i] = (read_scalar(r)?, read_scalar(r)?);
|
||||
}
|
||||
Ok(MultiexpAos { R_0, s })
|
||||
}
|
||||
}
|
217
crypto/dleq/src/cross_group/linear/concise.rs
Normal file
217
crypto/dleq/src/cross_group/linear/concise.rs
Normal file
|
@ -0,0 +1,217 @@
|
|||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use digest::Digest;
|
||||
|
||||
use transcript::Transcript;
|
||||
|
||||
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
|
||||
|
||||
use crate::{
|
||||
Generators,
|
||||
cross_group::{
|
||||
DLEqError, DLEqProof,
|
||||
scalar::{scalar_convert, mutual_scalar_from_bytes},
|
||||
schnorr::SchnorrPoK,
|
||||
linear::aos::ClassicAos,
|
||||
bits::Bits
|
||||
}
|
||||
};
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
use std::io::{Read, Write};
|
||||
|
||||
pub type ConciseDLEq<G0, G1> = DLEqProof<
|
||||
G0,
|
||||
G1,
|
||||
ClassicAos<G0, G1, 4>,
|
||||
ClassicAos<G0, G1, 2>
|
||||
>;
|
||||
|
||||
impl<G0: PrimeGroup, G1: PrimeGroup> ConciseDLEq<G0, G1>
|
||||
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
f: (G0::Scalar, G1::Scalar)
|
||||
) -> (Self, (G0::Scalar, G1::Scalar)) {
|
||||
Self::initialize_transcript(
|
||||
transcript,
|
||||
generators,
|
||||
((generators.0.primary * f.0), (generators.1.primary * f.1))
|
||||
);
|
||||
|
||||
let poks = (
|
||||
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
|
||||
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
|
||||
);
|
||||
|
||||
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
|
||||
let mut blinding_key = |rng: &mut R, last| {
|
||||
let blinding_key = (
|
||||
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, last),
|
||||
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, last)
|
||||
);
|
||||
if last {
|
||||
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
|
||||
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
|
||||
}
|
||||
blinding_key
|
||||
};
|
||||
|
||||
let mut pow_2 = (generators.0.primary, generators.1.primary);
|
||||
|
||||
let raw_bits = f.0.to_le_bits();
|
||||
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
|
||||
let mut bits = Vec::with_capacity(capacity);
|
||||
let mut these_bits: u8 = 0;
|
||||
for (i, bit) in raw_bits.iter().enumerate() {
|
||||
if i > ((capacity / 2) * 2) {
|
||||
break;
|
||||
}
|
||||
|
||||
let bit = *bit as u8;
|
||||
debug_assert_eq!(bit | 1, 1);
|
||||
|
||||
if (i % 2) == 0 {
|
||||
these_bits = bit;
|
||||
continue;
|
||||
} else {
|
||||
these_bits += bit << 1;
|
||||
}
|
||||
|
||||
let last = i == (capacity - 1);
|
||||
let blinding_key = blinding_key(&mut *rng, last);
|
||||
bits.push(
|
||||
Bits::prove(&mut *rng, transcript, generators, i / 2, &mut pow_2, these_bits, blinding_key)
|
||||
);
|
||||
}
|
||||
|
||||
let mut remainder = None;
|
||||
if (capacity % 2) == 1 {
|
||||
let blinding_key = blinding_key(&mut *rng, true);
|
||||
remainder = Some(
|
||||
Bits::prove(
|
||||
&mut *rng,
|
||||
transcript,
|
||||
generators,
|
||||
capacity / 2,
|
||||
&mut pow_2,
|
||||
these_bits,
|
||||
blinding_key
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
let proof = DLEqProof { bits, remainder, poks };
|
||||
debug_assert_eq!(
|
||||
proof.reconstruct_keys(),
|
||||
(generators.0.primary * f.0, generators.1.primary * f.1)
|
||||
);
|
||||
(proof, f)
|
||||
}
|
||||
|
||||
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
|
||||
/// the output of the passed in Digest. Given the non-standard requirements to achieve
|
||||
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
|
||||
/// to safely and securely generate a Scalar, without risk of failure, nor bias
|
||||
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
|
||||
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
|
||||
/// the relationship between keys would allow breaking all swaps after just one
|
||||
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
digest: D
|
||||
) -> (Self, (G0::Scalar, G1::Scalar)) {
|
||||
Self::prove_internal(
|
||||
rng,
|
||||
transcript,
|
||||
generators,
|
||||
mutual_scalar_from_bytes(digest.finalize().as_ref())
|
||||
)
|
||||
}
|
||||
|
||||
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
|
||||
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
|
||||
/// scalars until they're safely usable, as needed
|
||||
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
f0: G0::Scalar
|
||||
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
|
||||
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
|
||||
}
|
||||
|
||||
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
|
||||
pub fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>)
|
||||
) -> Result<(G0, G1), DLEqError> {
|
||||
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
|
||||
if (self.bits.len() != (capacity / 2).try_into().unwrap()) || (
|
||||
// These shouldn't be possible, as deserialize ensures this is present for fields with this
|
||||
// characteristic, and proofs locally generated will have it. Regardless, best to ensure
|
||||
(self.remainder.is_none() && ((capacity % 2) == 1)) ||
|
||||
(self.remainder.is_some() && ((capacity % 2) == 0))
|
||||
) {
|
||||
return Err(DLEqError::InvalidProofLength);
|
||||
}
|
||||
|
||||
let keys = self.reconstruct_keys();
|
||||
Self::initialize_transcript(transcript, generators, keys);
|
||||
if !(
|
||||
self.poks.0.verify(transcript, generators.0.primary, keys.0) &&
|
||||
self.poks.1.verify(transcript, generators.1.primary, keys.1)
|
||||
) {
|
||||
Err(DLEqError::InvalidProofOfKnowledge)?;
|
||||
}
|
||||
|
||||
let mut pow_2 = (generators.0.primary, generators.1.primary);
|
||||
for (i, bits) in self.bits.iter().enumerate() {
|
||||
bits.verify(&mut *rng, transcript, generators, &mut (), i, &mut pow_2)?;
|
||||
}
|
||||
if let Some(bit) = &self.remainder {
|
||||
bit.verify(&mut *rng, transcript, generators, &mut (), self.bits.len(), &mut pow_2)?;
|
||||
}
|
||||
|
||||
Ok(keys)
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
|
||||
for bit in &self.bits {
|
||||
bit.serialize(w)?;
|
||||
}
|
||||
if let Some(bit) = &self.remainder {
|
||||
bit.serialize(w)?;
|
||||
}
|
||||
self.poks.0.serialize(w)?;
|
||||
self.poks.1.serialize(w)
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
|
||||
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
|
||||
let mut bits = Vec::with_capacity(capacity.try_into().unwrap());
|
||||
for _ in 0 .. (capacity / 2) {
|
||||
bits.push(Bits::deserialize(r)?);
|
||||
}
|
||||
|
||||
let mut remainder = None;
|
||||
if (capacity % 2) == 1 {
|
||||
remainder = Some(Bits::deserialize(r)?);
|
||||
}
|
||||
|
||||
Ok(
|
||||
DLEqProof {
|
||||
bits,
|
||||
remainder,
|
||||
poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?)
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
182
crypto/dleq/src/cross_group/linear/efficient.rs
Normal file
182
crypto/dleq/src/cross_group/linear/efficient.rs
Normal file
|
@ -0,0 +1,182 @@
|
|||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use digest::Digest;
|
||||
|
||||
use transcript::Transcript;
|
||||
|
||||
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
|
||||
use multiexp::BatchVerifier;
|
||||
|
||||
use crate::{
|
||||
Generators,
|
||||
cross_group::{
|
||||
DLEqError, DLEqProof,
|
||||
scalar::{scalar_convert, mutual_scalar_from_bytes},
|
||||
schnorr::SchnorrPoK,
|
||||
linear::aos::MultiexpAos,
|
||||
bits::Bits
|
||||
}
|
||||
};
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
use std::io::{Read, Write};
|
||||
|
||||
pub type EfficientDLEq<G0, G1> = DLEqProof<G0, G1, MultiexpAos<G0, G1>, MultiexpAos<G0, G1>>;
|
||||
|
||||
impl<G0: PrimeGroup, G1: PrimeGroup> EfficientDLEq<G0, G1>
|
||||
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
f: (G0::Scalar, G1::Scalar)
|
||||
) -> (Self, (G0::Scalar, G1::Scalar)) {
|
||||
Self::initialize_transcript(
|
||||
transcript,
|
||||
generators,
|
||||
((generators.0.primary * f.0), (generators.1.primary * f.1))
|
||||
);
|
||||
|
||||
let poks = (
|
||||
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
|
||||
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
|
||||
);
|
||||
|
||||
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
|
||||
let mut blinding_key = |rng: &mut R, last| {
|
||||
let blinding_key = (
|
||||
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, last),
|
||||
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, last)
|
||||
);
|
||||
if last {
|
||||
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
|
||||
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
|
||||
}
|
||||
blinding_key
|
||||
};
|
||||
|
||||
let mut pow_2 = (generators.0.primary, generators.1.primary);
|
||||
|
||||
let raw_bits = f.0.to_le_bits();
|
||||
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
|
||||
let mut bits = Vec::with_capacity(capacity);
|
||||
for (i, bit) in raw_bits.iter().enumerate() {
|
||||
let bit = *bit as u8;
|
||||
debug_assert_eq!(bit | 1, 1);
|
||||
|
||||
let last = i == (capacity - 1);
|
||||
let blinding_key = blinding_key(&mut *rng, last);
|
||||
bits.push(
|
||||
Bits::prove(&mut *rng, transcript, generators, i, &mut pow_2, bit, blinding_key)
|
||||
);
|
||||
|
||||
if last {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let proof = DLEqProof { bits, remainder: None, poks };
|
||||
debug_assert_eq!(
|
||||
proof.reconstruct_keys(),
|
||||
(generators.0.primary * f.0, generators.1.primary * f.1)
|
||||
);
|
||||
(proof, f)
|
||||
}
|
||||
|
||||
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
|
||||
/// the output of the passed in Digest. Given the non-standard requirements to achieve
|
||||
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
|
||||
/// to safely and securely generate a Scalar, without risk of failure, nor bias
|
||||
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
|
||||
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
|
||||
/// the relationship between keys would allow breaking all swaps after just one
|
||||
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
digest: D
|
||||
) -> (Self, (G0::Scalar, G1::Scalar)) {
|
||||
Self::prove_internal(
|
||||
rng,
|
||||
transcript,
|
||||
generators,
|
||||
mutual_scalar_from_bytes(digest.finalize().as_ref())
|
||||
)
|
||||
}
|
||||
|
||||
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
|
||||
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
|
||||
/// scalars until they're safely usable, as needed
|
||||
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
f0: G0::Scalar
|
||||
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
|
||||
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
|
||||
}
|
||||
|
||||
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
|
||||
pub fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>)
|
||||
) -> Result<(G0, G1), DLEqError> {
|
||||
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
|
||||
// The latter case shouldn't be possible yet would explicitly be invalid
|
||||
if (self.bits.len() != capacity.try_into().unwrap()) || self.remainder.is_some() {
|
||||
return Err(DLEqError::InvalidProofLength);
|
||||
}
|
||||
|
||||
let keys = self.reconstruct_keys();
|
||||
Self::initialize_transcript(transcript, generators, keys);
|
||||
// TODO: Batch
|
||||
if !(
|
||||
self.poks.0.verify(transcript, generators.0.primary, keys.0) &&
|
||||
self.poks.1.verify(transcript, generators.1.primary, keys.1)
|
||||
) {
|
||||
Err(DLEqError::InvalidProofOfKnowledge)?;
|
||||
}
|
||||
|
||||
let mut batch = (
|
||||
BatchVerifier::new(self.bits.len() * 3),
|
||||
BatchVerifier::new(self.bits.len() * 3)
|
||||
);
|
||||
let mut pow_2 = (generators.0.primary, generators.1.primary);
|
||||
for (i, bits) in self.bits.iter().enumerate() {
|
||||
bits.verify(&mut *rng, transcript, generators, &mut batch, i, &mut pow_2)?;
|
||||
}
|
||||
if (!batch.0.verify_vartime()) || (!batch.1.verify_vartime()) {
|
||||
Err(DLEqError::InvalidProof)?;
|
||||
}
|
||||
|
||||
Ok(keys)
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
|
||||
for bit in &self.bits {
|
||||
bit.serialize(w)?;
|
||||
}
|
||||
self.poks.0.serialize(w)?;
|
||||
self.poks.1.serialize(w)
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
|
||||
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
|
||||
let mut bits = Vec::with_capacity(capacity.try_into().unwrap());
|
||||
for _ in 0 .. capacity {
|
||||
bits.push(Bits::deserialize(r)?);
|
||||
}
|
||||
|
||||
Ok(
|
||||
DLEqProof {
|
||||
bits,
|
||||
remainder: None,
|
||||
poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?)
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
7
crypto/dleq/src/cross_group/linear/mod.rs
Normal file
7
crypto/dleq/src/cross_group/linear/mod.rs
Normal file
|
@ -0,0 +1,7 @@
|
|||
pub(crate) mod aos;
|
||||
|
||||
mod concise;
|
||||
pub use concise::ConciseDLEq;
|
||||
|
||||
mod efficient;
|
||||
pub use efficient::EfficientDLEq;
|
|
@ -1,26 +1,24 @@
|
|||
use thiserror::Error;
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use digest::Digest;
|
||||
|
||||
use subtle::{ConstantTimeEq, ConditionallySelectable};
|
||||
|
||||
use transcript::Transcript;
|
||||
|
||||
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
|
||||
use group::{ff::{PrimeField, PrimeFieldBits}, prime::PrimeGroup};
|
||||
|
||||
use crate::Generators;
|
||||
|
||||
pub mod scalar;
|
||||
use scalar::{scalar_convert, mutual_scalar_from_bytes};
|
||||
|
||||
pub(crate) mod schnorr;
|
||||
use schnorr::SchnorrPoK;
|
||||
|
||||
mod bits;
|
||||
use bits::{RingSignature, Bits};
|
||||
|
||||
pub mod linear;
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
use std::io::{Read, Write};
|
||||
#[cfg(feature = "serialize")]
|
||||
use crate::read_scalar;
|
||||
use std::io::Read;
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub(crate) fn read_point<R: Read, G: PrimeGroup>(r: &mut R) -> std::io::Result<G> {
|
||||
|
@ -33,187 +31,6 @@ pub(crate) fn read_point<R: Read, G: PrimeGroup>(r: &mut R) -> std::io::Result<G
|
|||
Ok(point.unwrap())
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct Bits<G0: PrimeGroup, G1: PrimeGroup, const POSSIBLE_VALUES: usize> {
|
||||
commitments: (G0, G1),
|
||||
// Merged challenges have a slight security reduction, yet one already applied to the scalar
|
||||
// being proven for, and this saves ~8kb. Alternatively, challenges could be redefined as a seed,
|
||||
// present here, which is then hashed for each of the two challenges, remaining unbiased/unique
|
||||
// while maintaining the bandwidth savings, yet also while adding 252 hashes for
|
||||
// Secp256k1/Ed25519
|
||||
e_0: G0::Scalar,
|
||||
s: [(G0::Scalar, G1::Scalar); POSSIBLE_VALUES]
|
||||
}
|
||||
|
||||
impl<G0: PrimeGroup, G1: PrimeGroup, const POSSIBLE_VALUES: usize> Bits<G0, G1, POSSIBLE_VALUES>
|
||||
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
pub fn transcript<T: Transcript>(transcript: &mut T, i: usize, commitments: (G0, G1)) {
|
||||
if i == 0 {
|
||||
transcript.domain_separate(b"cross_group_dleq");
|
||||
}
|
||||
transcript.append_message(b"bit_group", &u16::try_from(i).unwrap().to_le_bytes());
|
||||
transcript.append_message(b"commitment_0", commitments.0.to_bytes().as_ref());
|
||||
transcript.append_message(b"commitment_1", commitments.1.to_bytes().as_ref());
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn nonces<T: Transcript>(mut transcript: T, nonces: (G0, G1)) -> (G0::Scalar, G1::Scalar) {
|
||||
transcript.append_message(b"nonce_0", nonces.0.to_bytes().as_ref());
|
||||
transcript.append_message(b"nonce_1", nonces.1.to_bytes().as_ref());
|
||||
mutual_scalar_from_bytes(transcript.challenge(b"challenge").as_ref())
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn R(
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
s: (G0::Scalar, G1::Scalar),
|
||||
A: (G0, G1),
|
||||
e: (G0::Scalar, G1::Scalar)
|
||||
) -> (G0, G1) {
|
||||
(((generators.0.alt * s.0) - (A.0 * e.0)), ((generators.1.alt * s.1) - (A.1 * e.1)))
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn R_nonces<T: Transcript>(
|
||||
transcript: T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
s: (G0::Scalar, G1::Scalar),
|
||||
A: (G0, G1),
|
||||
e: (G0::Scalar, G1::Scalar)
|
||||
) -> (G0::Scalar, G1::Scalar) {
|
||||
Self::nonces(transcript, Self::R(generators, s, A, e))
|
||||
}
|
||||
|
||||
fn ring(pow_2: (G0, G1), commitments: (G0, G1)) -> [(G0, G1); POSSIBLE_VALUES] {
|
||||
let mut res = [(G0::identity(), G1::identity()); POSSIBLE_VALUES];
|
||||
res[POSSIBLE_VALUES - 1] = commitments;
|
||||
for i in (0 .. (POSSIBLE_VALUES - 1)).rev() {
|
||||
res[i] = (res[i + 1].0 - pow_2.0, res[i + 1].1 - pow_2.1);
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
i: usize,
|
||||
pow_2: &mut (G0, G1),
|
||||
bits: u8,
|
||||
blinding_key: (G0::Scalar, G1::Scalar)
|
||||
) -> Bits<G0, G1, POSSIBLE_VALUES> {
|
||||
// While it is possible to use larger values, it's not efficient to do so
|
||||
// 2 + 2 == 2^2, yet 2 + 2 + 2 < 2^3
|
||||
debug_assert!((POSSIBLE_VALUES == 2) || (POSSIBLE_VALUES == 4));
|
||||
|
||||
let mut commitments = (
|
||||
(generators.0.alt * blinding_key.0),
|
||||
(generators.1.alt * blinding_key.1)
|
||||
);
|
||||
commitments.0 += pow_2.0 * G0::Scalar::from(bits.into());
|
||||
commitments.1 += pow_2.1 * G1::Scalar::from(bits.into());
|
||||
Self::transcript(transcript, i, commitments);
|
||||
|
||||
let ring = Self::ring(*pow_2, commitments);
|
||||
// Invert the index to get the raw blinding key's position in the ring
|
||||
let actual = POSSIBLE_VALUES - 1 - usize::from(bits);
|
||||
|
||||
let mut e_0 = G0::Scalar::zero();
|
||||
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); POSSIBLE_VALUES];
|
||||
|
||||
let r = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
|
||||
#[allow(non_snake_case)]
|
||||
let original_R = (generators.0.alt * r.0, generators.1.alt * r.1);
|
||||
#[allow(non_snake_case)]
|
||||
let mut R = original_R;
|
||||
|
||||
for i in ((actual + 1) .. (actual + POSSIBLE_VALUES + 1)).map(|i| i % POSSIBLE_VALUES) {
|
||||
let e = Self::nonces(transcript.clone(), R);
|
||||
e_0 = G0::Scalar::conditional_select(&e_0, &e.0, usize::ct_eq(&i, &0));
|
||||
|
||||
// Solve for the real index
|
||||
if i == actual {
|
||||
s[i] = (r.0 + (e.0 * blinding_key.0), r.1 + (e.1 * blinding_key.1));
|
||||
debug_assert_eq!(Self::R(generators, s[i], ring[actual], e), original_R);
|
||||
break;
|
||||
// Generate a decoy response
|
||||
} else {
|
||||
s[i] = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
|
||||
}
|
||||
|
||||
R = Self::R(generators, s[i], ring[i], e);
|
||||
}
|
||||
|
||||
pow_2.0 = pow_2.0.double();
|
||||
pow_2.1 = pow_2.1.double();
|
||||
if POSSIBLE_VALUES == 4 {
|
||||
pow_2.0 = pow_2.0.double();
|
||||
pow_2.1 = pow_2.1.double();
|
||||
}
|
||||
|
||||
Bits { commitments, e_0, s }
|
||||
}
|
||||
|
||||
pub fn verify<T: Clone + Transcript>(
|
||||
&self,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
i: usize,
|
||||
pow_2: &mut (G0, G1)
|
||||
) -> Result<(), DLEqError> {
|
||||
debug_assert!((POSSIBLE_VALUES == 2) || (POSSIBLE_VALUES == 4));
|
||||
|
||||
Self::transcript(transcript, i, self.commitments);
|
||||
|
||||
let ring = Self::ring(*pow_2, self.commitments);
|
||||
let e_0 = (self.e_0, scalar_convert(self.e_0).ok_or(DLEqError::InvalidChallenge)?);
|
||||
let mut e = None;
|
||||
for i in 0 .. POSSIBLE_VALUES {
|
||||
e = Some(
|
||||
Self::R_nonces(transcript.clone(), generators, self.s[i], ring[i], e.unwrap_or(e_0))
|
||||
);
|
||||
}
|
||||
|
||||
// Will panic if the above loop is never run somehow
|
||||
// If e wasn't an Option, and instead initially set to e_0, it'd always pass
|
||||
if e_0 != e.unwrap() {
|
||||
return Err(DLEqError::InvalidProof);
|
||||
}
|
||||
|
||||
pow_2.0 = pow_2.0.double();
|
||||
pow_2.1 = pow_2.1.double();
|
||||
if POSSIBLE_VALUES == 4 {
|
||||
pow_2.0 = pow_2.0.double();
|
||||
pow_2.1 = pow_2.1.double();
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
|
||||
w.write_all(self.commitments.0.to_bytes().as_ref())?;
|
||||
w.write_all(self.commitments.1.to_bytes().as_ref())?;
|
||||
w.write_all(self.e_0.to_repr().as_ref())?;
|
||||
for i in 0 .. POSSIBLE_VALUES {
|
||||
w.write_all(self.s[i].0.to_repr().as_ref())?;
|
||||
w.write_all(self.s[i].1.to_repr().as_ref())?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Bits<G0, G1, POSSIBLE_VALUES>> {
|
||||
let commitments = (read_point(r)?, read_point(r)?);
|
||||
let e_0 = read_scalar(r)?;
|
||||
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); POSSIBLE_VALUES];
|
||||
for i in 0 .. POSSIBLE_VALUES {
|
||||
s[i] = (read_scalar(r)?, read_scalar(r)?);
|
||||
}
|
||||
Ok(Bits { commitments, e_0, s })
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Error, PartialEq, Eq, Debug)]
|
||||
pub enum DLEqError {
|
||||
#[error("invalid proof of knowledge")]
|
||||
|
@ -229,15 +46,24 @@ pub enum DLEqError {
|
|||
// Debug would be such a dump of data this likely isn't helpful, but at least it's available to
|
||||
// anyone who wants it
|
||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||
pub struct DLEqProof<G0: PrimeGroup, G1: PrimeGroup> {
|
||||
bits: Vec<Bits<G0, G1, 4>>,
|
||||
remainder: Option<Bits<G0, G1, 2>>,
|
||||
pub struct DLEqProof<
|
||||
G0: PrimeGroup,
|
||||
G1: PrimeGroup,
|
||||
RING: RingSignature<G0, G1>,
|
||||
REM: RingSignature<G0, G1>
|
||||
> where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
bits: Vec<Bits<G0, G1, RING>>,
|
||||
remainder: Option<Bits<G0, G1, REM>>,
|
||||
poks: (SchnorrPoK<G0>, SchnorrPoK<G1>)
|
||||
}
|
||||
|
||||
impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
|
||||
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
fn initialize_transcript<T: Transcript>(
|
||||
impl<
|
||||
G0: PrimeGroup,
|
||||
G1: PrimeGroup,
|
||||
RING: RingSignature<G0, G1>,
|
||||
REM: RingSignature<G0, G1>
|
||||
> DLEqProof<G0, G1, RING, REM> where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
pub(crate) fn initialize_transcript<T: Transcript>(
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
keys: (G0, G1)
|
||||
|
@ -249,7 +75,7 @@ impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
|
|||
transcript.append_message(b"point_1", keys.1.to_bytes().as_ref());
|
||||
}
|
||||
|
||||
fn blinding_key<R: RngCore + CryptoRng, F: PrimeField>(
|
||||
pub(crate) fn blinding_key<R: RngCore + CryptoRng, F: PrimeField>(
|
||||
rng: &mut R,
|
||||
total: &mut F,
|
||||
last: bool
|
||||
|
@ -264,195 +90,16 @@ impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
|
|||
}
|
||||
|
||||
fn reconstruct_keys(&self) -> (G0, G1) {
|
||||
let remainder = self.remainder
|
||||
.as_ref()
|
||||
.map(|bit| bit.commitments)
|
||||
.unwrap_or((G0::identity(), G1::identity()));
|
||||
(
|
||||
self.bits.iter().map(|bit| bit.commitments.0).sum::<G0>() + remainder.0,
|
||||
self.bits.iter().map(|bit| bit.commitments.1).sum::<G1>() + remainder.1
|
||||
)
|
||||
}
|
||||
|
||||
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
f: (G0::Scalar, G1::Scalar)
|
||||
) -> (Self, (G0::Scalar, G1::Scalar)) {
|
||||
Self::initialize_transcript(
|
||||
transcript,
|
||||
generators,
|
||||
((generators.0.primary * f.0), (generators.1.primary * f.1))
|
||||
let mut res = (
|
||||
self.bits.iter().map(|bit| bit.commitments.0).sum::<G0>(),
|
||||
self.bits.iter().map(|bit| bit.commitments.1).sum::<G1>()
|
||||
);
|
||||
|
||||
let poks = (
|
||||
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
|
||||
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
|
||||
);
|
||||
|
||||
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
|
||||
let mut blinding_key = |rng: &mut R, last| {
|
||||
let blinding_key = (
|
||||
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, last),
|
||||
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, last)
|
||||
);
|
||||
if last {
|
||||
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
|
||||
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
|
||||
}
|
||||
blinding_key
|
||||
};
|
||||
|
||||
let mut pow_2 = (generators.0.primary, generators.1.primary);
|
||||
|
||||
let raw_bits = f.0.to_le_bits();
|
||||
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
|
||||
let mut bits = Vec::with_capacity(capacity);
|
||||
let mut these_bits: u8 = 0;
|
||||
for (i, bit) in raw_bits.iter().enumerate() {
|
||||
if i > ((capacity / 2) * 2) {
|
||||
break;
|
||||
}
|
||||
|
||||
let bit = *bit as u8;
|
||||
debug_assert_eq!(bit | 1, 1);
|
||||
|
||||
if (i % 2) == 0 {
|
||||
these_bits = bit;
|
||||
continue;
|
||||
} else {
|
||||
these_bits += bit << 1;
|
||||
}
|
||||
|
||||
let last = i == (capacity - 1);
|
||||
let blinding_key = blinding_key(&mut *rng, last);
|
||||
bits.push(
|
||||
Bits::prove(&mut *rng, transcript, generators, i / 2, &mut pow_2, these_bits, blinding_key)
|
||||
);
|
||||
}
|
||||
|
||||
let mut remainder = None;
|
||||
if (capacity % 2) == 1 {
|
||||
let blinding_key = blinding_key(&mut *rng, true);
|
||||
remainder = Some(
|
||||
Bits::prove(
|
||||
&mut *rng,
|
||||
transcript,
|
||||
generators,
|
||||
capacity / 2,
|
||||
&mut pow_2,
|
||||
these_bits,
|
||||
blinding_key
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
let proof = DLEqProof { bits, remainder, poks };
|
||||
debug_assert_eq!(
|
||||
proof.reconstruct_keys(),
|
||||
(generators.0.primary * f.0, generators.1.primary * f.1)
|
||||
);
|
||||
(proof, f)
|
||||
}
|
||||
|
||||
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
|
||||
/// the output of the passed in Digest. Given the non-standard requirements to achieve
|
||||
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
|
||||
/// to safely and securely generate a Scalar, without risk of failure, nor bias
|
||||
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
|
||||
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
|
||||
/// the relationship between keys would allow breaking all swaps after just one
|
||||
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
digest: D
|
||||
) -> (Self, (G0::Scalar, G1::Scalar)) {
|
||||
Self::prove_internal(
|
||||
rng,
|
||||
transcript,
|
||||
generators,
|
||||
mutual_scalar_from_bytes(digest.finalize().as_ref())
|
||||
)
|
||||
}
|
||||
|
||||
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
|
||||
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
|
||||
/// scalars until they're safely usable, as needed
|
||||
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
f0: G0::Scalar
|
||||
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
|
||||
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
|
||||
}
|
||||
|
||||
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
|
||||
pub fn verify<T: Clone + Transcript>(
|
||||
&self,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>)
|
||||
) -> Result<(G0, G1), DLEqError> {
|
||||
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
|
||||
if (self.bits.len() != (capacity / 2).try_into().unwrap()) || (
|
||||
// This shouldn't be possible, as deserialize ensures this is present for fields with this
|
||||
// characteristic, and proofs locally generated will have it. Regardless, best to ensure
|
||||
self.remainder.is_none() && ((capacity % 2) == 1)
|
||||
) {
|
||||
return Err(DLEqError::InvalidProofLength);
|
||||
}
|
||||
|
||||
let keys = self.reconstruct_keys();
|
||||
Self::initialize_transcript(transcript, generators, keys);
|
||||
if !(
|
||||
self.poks.0.verify(transcript, generators.0.primary, keys.0) &&
|
||||
self.poks.1.verify(transcript, generators.1.primary, keys.1)
|
||||
) {
|
||||
Err(DLEqError::InvalidProofOfKnowledge)?;
|
||||
}
|
||||
|
||||
let mut pow_2 = (generators.0.primary, generators.1.primary);
|
||||
for (i, bits) in self.bits.iter().enumerate() {
|
||||
bits.verify(transcript, generators, i, &mut pow_2)?;
|
||||
}
|
||||
if let Some(bit) = &self.remainder {
|
||||
bit.verify(transcript, generators, self.bits.len(), &mut pow_2)?;
|
||||
res.0 += bit.commitments.0;
|
||||
res.1 += bit.commitments.1;
|
||||
}
|
||||
|
||||
Ok(keys)
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
|
||||
for bit in &self.bits {
|
||||
bit.serialize(w)?;
|
||||
}
|
||||
if let Some(bit) = &self.remainder {
|
||||
bit.serialize(w)?;
|
||||
}
|
||||
self.poks.0.serialize(w)?;
|
||||
self.poks.1.serialize(w)
|
||||
}
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<DLEqProof<G0, G1>> {
|
||||
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
|
||||
let mut bits = Vec::with_capacity(capacity.try_into().unwrap());
|
||||
for _ in 0 .. (capacity / 2) {
|
||||
bits.push(Bits::deserialize(r)?);
|
||||
}
|
||||
let mut remainder = None;
|
||||
if (capacity % 2) == 1 {
|
||||
remainder = Some(Bits::deserialize(r)?);
|
||||
}
|
||||
Ok(
|
||||
DLEqProof {
|
||||
bits,
|
||||
remainder,
|
||||
poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?)
|
||||
}
|
||||
)
|
||||
res
|
||||
}
|
||||
}
|
||||
|
|
98
crypto/dleq/src/tests/cross_group/linear/concise.rs
Normal file
98
crypto/dleq/src/tests/cross_group/linear/concise.rs
Normal file
|
@ -0,0 +1,98 @@
|
|||
use rand_core::{RngCore, OsRng};
|
||||
|
||||
use ff::{Field, PrimeField};
|
||||
|
||||
use k256::Scalar;
|
||||
#[cfg(feature = "serialize")]
|
||||
use k256::ProjectivePoint;
|
||||
#[cfg(feature = "serialize")]
|
||||
use dalek_ff_group::EdwardsPoint;
|
||||
|
||||
use blake2::{Digest, Blake2b512};
|
||||
|
||||
use crate::{
|
||||
cross_group::{scalar::mutual_scalar_from_bytes, linear::ConciseDLEq},
|
||||
tests::cross_group::{transcript, generators}
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_linear_concise_cross_group_dleq() {
|
||||
let generators = generators();
|
||||
|
||||
for i in 0 .. 1 {
|
||||
let (proof, keys) = if i == 0 {
|
||||
let mut seed = [0; 32];
|
||||
OsRng.fill_bytes(&mut seed);
|
||||
|
||||
ConciseDLEq::prove(
|
||||
&mut OsRng,
|
||||
&mut transcript(),
|
||||
generators,
|
||||
Blake2b512::new().chain_update(seed)
|
||||
)
|
||||
} else {
|
||||
let mut key;
|
||||
let mut res;
|
||||
while {
|
||||
key = Scalar::random(&mut OsRng);
|
||||
res = ConciseDLEq::prove_without_bias(
|
||||
&mut OsRng,
|
||||
&mut transcript(),
|
||||
generators,
|
||||
key
|
||||
);
|
||||
res.is_none()
|
||||
} {}
|
||||
let res = res.unwrap();
|
||||
assert_eq!(key, res.1.0);
|
||||
res
|
||||
};
|
||||
|
||||
let public_keys = proof.verify(&mut OsRng, &mut transcript(), generators).unwrap();
|
||||
assert_eq!(generators.0.primary * keys.0, public_keys.0);
|
||||
assert_eq!(generators.1.primary * keys.1, public_keys.1);
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
{
|
||||
let mut buf = vec![];
|
||||
proof.serialize(&mut buf).unwrap();
|
||||
let deserialized = ConciseDLEq::<ProjectivePoint, EdwardsPoint>::deserialize(
|
||||
&mut std::io::Cursor::new(&buf)
|
||||
).unwrap();
|
||||
assert_eq!(proof, deserialized);
|
||||
deserialized.verify(&mut OsRng, &mut transcript(), generators).unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_remainder() {
|
||||
// Uses Secp256k1 for both to achieve an odd capacity of 255
|
||||
assert_eq!(Scalar::CAPACITY, 255);
|
||||
let generators = (generators().0, generators().0);
|
||||
let keys = mutual_scalar_from_bytes(&[0xFF; 32]);
|
||||
assert_eq!(keys.0, keys.1);
|
||||
|
||||
let (proof, res) = ConciseDLEq::prove_without_bias(
|
||||
&mut OsRng,
|
||||
&mut transcript(),
|
||||
generators,
|
||||
keys.0
|
||||
).unwrap();
|
||||
assert_eq!(keys, res);
|
||||
|
||||
let public_keys = proof.verify(&mut OsRng, &mut transcript(), generators).unwrap();
|
||||
assert_eq!(generators.0.primary * keys.0, public_keys.0);
|
||||
assert_eq!(generators.1.primary * keys.1, public_keys.1);
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
{
|
||||
let mut buf = vec![];
|
||||
proof.serialize(&mut buf).unwrap();
|
||||
let deserialized = ConciseDLEq::<ProjectivePoint, ProjectivePoint>::deserialize(
|
||||
&mut std::io::Cursor::new(&buf)
|
||||
).unwrap();
|
||||
assert_eq!(proof, deserialized);
|
||||
deserialized.verify(&mut OsRng, &mut transcript(), generators).unwrap();
|
||||
}
|
||||
}
|
66
crypto/dleq/src/tests/cross_group/linear/efficient.rs
Normal file
66
crypto/dleq/src/tests/cross_group/linear/efficient.rs
Normal file
|
@ -0,0 +1,66 @@
|
|||
use rand_core::{RngCore, OsRng};
|
||||
|
||||
use ff::Field;
|
||||
|
||||
use k256::Scalar;
|
||||
#[cfg(feature = "serialize")]
|
||||
use k256::ProjectivePoint;
|
||||
#[cfg(feature = "serialize")]
|
||||
use dalek_ff_group::EdwardsPoint;
|
||||
|
||||
use blake2::{Digest, Blake2b512};
|
||||
|
||||
use crate::{
|
||||
cross_group::linear::EfficientDLEq,
|
||||
tests::cross_group::{transcript, generators}
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_linear_efficient_cross_group_dleq() {
|
||||
let generators = generators();
|
||||
|
||||
for i in 0 .. 1 {
|
||||
let (proof, keys) = if i == 0 {
|
||||
let mut seed = [0; 32];
|
||||
OsRng.fill_bytes(&mut seed);
|
||||
|
||||
EfficientDLEq::prove(
|
||||
&mut OsRng,
|
||||
&mut transcript(),
|
||||
generators,
|
||||
Blake2b512::new().chain_update(seed)
|
||||
)
|
||||
} else {
|
||||
let mut key;
|
||||
let mut res;
|
||||
while {
|
||||
key = Scalar::random(&mut OsRng);
|
||||
res = EfficientDLEq::prove_without_bias(
|
||||
&mut OsRng,
|
||||
&mut transcript(),
|
||||
generators,
|
||||
key
|
||||
);
|
||||
res.is_none()
|
||||
} {}
|
||||
let res = res.unwrap();
|
||||
assert_eq!(key, res.1.0);
|
||||
res
|
||||
};
|
||||
|
||||
let public_keys = proof.verify(&mut OsRng, &mut transcript(), generators).unwrap();
|
||||
assert_eq!(generators.0.primary * keys.0, public_keys.0);
|
||||
assert_eq!(generators.1.primary * keys.1, public_keys.1);
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
{
|
||||
let mut buf = vec![];
|
||||
proof.serialize(&mut buf).unwrap();
|
||||
let deserialized = EfficientDLEq::<ProjectivePoint, EdwardsPoint>::deserialize(
|
||||
&mut std::io::Cursor::new(&buf)
|
||||
).unwrap();
|
||||
assert_eq!(proof, deserialized);
|
||||
deserialized.verify(&mut OsRng, &mut transcript(), generators).unwrap();
|
||||
}
|
||||
}
|
||||
}
|
2
crypto/dleq/src/tests/cross_group/linear/mod.rs
Normal file
2
crypto/dleq/src/tests/cross_group/linear/mod.rs
Normal file
|
@ -0,0 +1,2 @@
|
|||
mod concise;
|
||||
mod efficient;
|
|
@ -2,7 +2,7 @@ mod scalar;
|
|||
mod schnorr;
|
||||
|
||||
use hex_literal::hex;
|
||||
use rand_core::{RngCore, OsRng};
|
||||
use rand_core::OsRng;
|
||||
|
||||
use ff::{Field, PrimeField};
|
||||
use group::{Group, GroupEncoding};
|
||||
|
@ -10,17 +10,17 @@ use group::{Group, GroupEncoding};
|
|||
use k256::{Scalar, ProjectivePoint};
|
||||
use dalek_ff_group::{self as dfg, EdwardsPoint, CompressedEdwardsY};
|
||||
|
||||
use blake2::{Digest, Blake2b512};
|
||||
|
||||
use transcript::RecommendedTranscript;
|
||||
|
||||
use crate::{Generators, cross_group::{DLEqProof, scalar::mutual_scalar_from_bytes}};
|
||||
use crate::{Generators, cross_group::linear::EfficientDLEq};
|
||||
|
||||
fn transcript() -> RecommendedTranscript {
|
||||
mod linear;
|
||||
|
||||
pub(crate) fn transcript() -> RecommendedTranscript {
|
||||
RecommendedTranscript::new(b"Cross-Group DLEq Proof Test")
|
||||
}
|
||||
|
||||
fn generators() -> (Generators<ProjectivePoint>, Generators<EdwardsPoint>) {
|
||||
pub(crate) fn generators() -> (Generators<ProjectivePoint>, Generators<EdwardsPoint>) {
|
||||
(
|
||||
Generators::new(
|
||||
ProjectivePoint::GENERATOR,
|
||||
|
@ -46,7 +46,7 @@ fn test_rejection_sampling() {
|
|||
}
|
||||
|
||||
assert!(
|
||||
DLEqProof::prove_without_bias(
|
||||
EfficientDLEq::prove_without_bias(
|
||||
&mut OsRng,
|
||||
&mut RecommendedTranscript::new(b""),
|
||||
generators(),
|
||||
|
@ -54,85 +54,3 @@ fn test_rejection_sampling() {
|
|||
).is_none()
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cross_group_dleq() {
|
||||
let generators = generators();
|
||||
|
||||
for i in 0 .. 2 {
|
||||
let (proof, keys) = if i == 0 {
|
||||
let mut seed = [0; 32];
|
||||
OsRng.fill_bytes(&mut seed);
|
||||
|
||||
DLEqProof::prove(
|
||||
&mut OsRng,
|
||||
&mut transcript(),
|
||||
generators,
|
||||
Blake2b512::new().chain_update(seed)
|
||||
)
|
||||
} else {
|
||||
let mut key;
|
||||
let mut res;
|
||||
while {
|
||||
key = Scalar::random(&mut OsRng);
|
||||
res = DLEqProof::prove_without_bias(
|
||||
&mut OsRng,
|
||||
&mut transcript(),
|
||||
generators,
|
||||
key
|
||||
);
|
||||
res.is_none()
|
||||
} {}
|
||||
let res = res.unwrap();
|
||||
assert_eq!(key, res.1.0);
|
||||
res
|
||||
};
|
||||
|
||||
let public_keys = proof.verify(&mut transcript(), generators).unwrap();
|
||||
assert_eq!(generators.0.primary * keys.0, public_keys.0);
|
||||
assert_eq!(generators.1.primary * keys.1, public_keys.1);
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
{
|
||||
let mut buf = vec![];
|
||||
proof.serialize(&mut buf).unwrap();
|
||||
let deserialized = DLEqProof::<ProjectivePoint, EdwardsPoint>::deserialize(
|
||||
&mut std::io::Cursor::new(&buf)
|
||||
).unwrap();
|
||||
assert_eq!(proof, deserialized);
|
||||
deserialized.verify(&mut transcript(), generators).unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_remainder() {
|
||||
// Uses Secp256k1 for both to achieve an odd capacity of 255
|
||||
assert_eq!(Scalar::CAPACITY, 255);
|
||||
let generators = (generators().0, generators().0);
|
||||
let keys = mutual_scalar_from_bytes(&[0xFF; 32]);
|
||||
assert_eq!(keys.0, keys.1);
|
||||
|
||||
let (proof, res) = DLEqProof::prove_without_bias(
|
||||
&mut OsRng,
|
||||
&mut transcript(),
|
||||
generators,
|
||||
keys.0
|
||||
).unwrap();
|
||||
assert_eq!(keys, res);
|
||||
|
||||
let public_keys = proof.verify(&mut transcript(), generators).unwrap();
|
||||
assert_eq!(generators.0.primary * keys.0, public_keys.0);
|
||||
assert_eq!(generators.1.primary * keys.1, public_keys.1);
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
{
|
||||
let mut buf = vec![];
|
||||
proof.serialize(&mut buf).unwrap();
|
||||
let deserialized = DLEqProof::<ProjectivePoint, ProjectivePoint>::deserialize(
|
||||
&mut std::io::Cursor::new(&buf)
|
||||
).unwrap();
|
||||
assert_eq!(proof, deserialized);
|
||||
deserialized.verify(&mut transcript(), generators).unwrap();
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue