Add a batch verified DLEq

The batch verified one offers ~23% faster verification. While this 
massively refactors for modularity, I'm still not happy with the DLEq 
proofs at the top level, nor am I happy with the AOS signatures. I'll 
work on cleaning them up more later.
This commit is contained in:
Luke Parker 2022-07-05 19:10:30 -04:00
parent fe9a8d9495
commit 26cee46950
11 changed files with 1031 additions and 475 deletions

View file

@ -19,7 +19,7 @@ transcript = { package = "flexible-transcript", path = "../transcript", version
ff = "0.12"
group = "0.12"
multiexp = { path = "../multiexp", optional = true }
multiexp = { path = "../multiexp", features = ["batch"], optional = true }
[dev-dependencies]
hex-literal = "0.3"
@ -33,8 +33,8 @@ transcript = { package = "flexible-transcript", path = "../transcript", features
[features]
serialize = []
cross_group = []
cross_group = ["multiexp"]
secure_capacity_difference = []
# These only apply to cross_group, yet are default to ensure its integrity and performance
default = ["secure_capacity_difference", "multiexp"]
# Only applies to cross_group, yet is default to ensure security
default = ["secure_capacity_difference"]

View file

@ -0,0 +1,141 @@
use rand_core::{RngCore, CryptoRng};
use transcript::Transcript;
use group::{ff::PrimeFieldBits, prime::PrimeGroup};
use crate::{Generators, cross_group::DLEqError};
#[cfg(feature = "serialize")]
use std::io::{Read, Write};
#[cfg(feature = "serialize")]
use crate::cross_group::read_point;
pub trait RingSignature<G0: PrimeGroup, G1: PrimeGroup>: Sized {
type Context;
const LEN: usize;
fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: T,
generators: (Generators<G0>, Generators<G1>),
ring: &[(G0, G1)],
actual: usize,
blinding_key: (G0::Scalar, G1::Scalar)
) -> Self;
fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
&self,
rng: &mut R,
transcript: T,
generators: (Generators<G0>, Generators<G1>),
context: &mut Self::Context,
ring: &[(G0, G1)]
) -> Result<(), DLEqError>;
#[cfg(feature = "serialize")]
fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()>;
#[cfg(feature = "serialize")]
fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self>;
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub(crate) struct Bits<G0: PrimeGroup, G1: PrimeGroup, RING: RingSignature<G0, G1>> {
pub(crate) commitments: (G0, G1),
signature: RING
}
impl<G0: PrimeGroup, G1: PrimeGroup, RING: RingSignature<G0, G1>> Bits<G0, G1, RING>
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
fn transcript<T: Transcript>(transcript: &mut T, i: usize, commitments: (G0, G1)) {
if i == 0 {
transcript.domain_separate(b"cross_group_dleq");
}
transcript.append_message(b"bit_group", &u16::try_from(i).unwrap().to_le_bytes());
transcript.append_message(b"commitment_0", commitments.0.to_bytes().as_ref());
transcript.append_message(b"commitment_1", commitments.1.to_bytes().as_ref());
}
fn ring(pow_2: (G0, G1), commitments: (G0, G1)) -> Vec<(G0, G1)> {
let mut res = vec![(G0::identity(), G1::identity()); RING::LEN];
res[RING::LEN - 1] = commitments;
for i in (0 .. (RING::LEN - 1)).rev() {
res[i] = (res[i + 1].0 - pow_2.0, res[i + 1].1 - pow_2.1);
}
res
}
fn shift(pow_2: &mut (G0, G1)) {
pow_2.0 = pow_2.0.double();
pow_2.1 = pow_2.1.double();
if RING::LEN == 4 {
pow_2.0 = pow_2.0.double();
pow_2.1 = pow_2.1.double();
}
}
pub(crate) fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
i: usize,
pow_2: &mut (G0, G1),
bits: u8,
blinding_key: (G0::Scalar, G1::Scalar)
) -> Self {
debug_assert!((RING::LEN == 2) || (RING::LEN == 4));
let mut commitments = (
(generators.0.alt * blinding_key.0),
(generators.1.alt * blinding_key.1)
);
commitments.0 += pow_2.0 * G0::Scalar::from(bits.into());
commitments.1 += pow_2.1 * G1::Scalar::from(bits.into());
Self::transcript(transcript, i, commitments);
let ring = Self::ring(*pow_2, commitments);
// Invert the index to get the raw blinding key's position in the ring
let actual = RING::LEN - 1 - usize::from(bits);
let signature = RING::prove(rng, transcript.clone(), generators, &ring, actual, blinding_key);
Self::shift(pow_2);
Bits { commitments, signature }
}
pub(crate) fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
&self,
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
context: &mut RING::Context,
i: usize,
pow_2: &mut (G0, G1)
) -> Result<(), DLEqError> {
debug_assert!((RING::LEN == 2) || (RING::LEN == 4));
Self::transcript(transcript, i, self.commitments);
self.signature.verify(
rng,
transcript.clone(),
generators,
context,
&Self::ring(*pow_2, self.commitments)
)?;
Self::shift(pow_2);
Ok(())
}
#[cfg(feature = "serialize")]
pub(crate) fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
w.write_all(self.commitments.0.to_bytes().as_ref())?;
w.write_all(self.commitments.1.to_bytes().as_ref())?;
self.signature.serialize(w)
}
#[cfg(feature = "serialize")]
pub(crate) fn deserialize<Re: Read>(r: &mut Re) -> std::io::Result<Self> {
Ok(Bits { commitments: (read_point(r)?, read_point(r)?), signature: RING::deserialize(r)? })
}
}

View file

@ -0,0 +1,278 @@
use rand_core::{RngCore, CryptoRng};
use subtle::{ConstantTimeEq, ConditionallySelectable};
use transcript::Transcript;
use group::{ff::{Field, PrimeFieldBits}, prime::PrimeGroup};
use multiexp::BatchVerifier;
use crate::{
Generators,
cross_group::{DLEqError, scalar::{scalar_convert, mutual_scalar_from_bytes}, bits::RingSignature}
};
#[cfg(feature = "serialize")]
use std::io::{Read, Write};
#[cfg(feature = "serialize")]
use ff::PrimeField;
#[cfg(feature = "serialize")]
use crate::{read_scalar, cross_group::read_point};
#[allow(non_snake_case)]
fn nonces<
T: Transcript,
G0: PrimeGroup,
G1: PrimeGroup
>(mut transcript: T, nonces: (G0, G1)) -> (G0::Scalar, G1::Scalar)
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
transcript.append_message(b"nonce_0", nonces.0.to_bytes().as_ref());
transcript.append_message(b"nonce_1", nonces.1.to_bytes().as_ref());
mutual_scalar_from_bytes(transcript.challenge(b"challenge").as_ref())
}
#[allow(non_snake_case)]
fn calculate_R<G0: PrimeGroup, G1: PrimeGroup>(
generators: (Generators<G0>, Generators<G1>),
s: (G0::Scalar, G1::Scalar),
A: (G0, G1),
e: (G0::Scalar, G1::Scalar)
) -> (G0, G1) {
(((generators.0.alt * s.0) - (A.0 * e.0)), ((generators.1.alt * s.1) - (A.1 * e.1)))
}
#[allow(non_snake_case)]
fn R_nonces<T: Transcript, G0: PrimeGroup, G1: PrimeGroup>(
transcript: T,
generators: (Generators<G0>, Generators<G1>),
s: (G0::Scalar, G1::Scalar),
A: (G0, G1),
e: (G0::Scalar, G1::Scalar)
) -> (G0::Scalar, G1::Scalar) where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
nonces(transcript, calculate_R(generators, s, A, e))
}
#[allow(non_snake_case)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct ClassicAos<G0: PrimeGroup, G1: PrimeGroup, const RING_LEN: usize> {
// Merged challenges have a slight security reduction, yet one already applied to the scalar
// being proven for, and this saves ~8kb. Alternatively, challenges could be redefined as a seed,
// present here, which is then hashed for each of the two challenges, remaining unbiased/unique
// while maintaining the bandwidth savings, yet also while adding 252 hashes for
// Secp256k1/Ed25519
e_0: G0::Scalar,
s: [(G0::Scalar, G1::Scalar); RING_LEN]
}
impl<
G0: PrimeGroup,
G1: PrimeGroup,
const RING_LEN: usize
> RingSignature<G0, G1> for ClassicAos<G0, G1, RING_LEN>
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
type Context = ();
const LEN: usize = RING_LEN;
fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: T,
generators: (Generators<G0>, Generators<G1>),
ring: &[(G0, G1)],
actual: usize,
blinding_key: (G0::Scalar, G1::Scalar)
) -> Self {
// While it is possible to use larger values, it's not efficient to do so
// 2 + 2 == 2^2, yet 2 + 2 + 2 < 2^3
debug_assert!((RING_LEN == 2) || (RING_LEN == 4));
let mut e_0 = G0::Scalar::zero();
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); RING_LEN];
let r = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
#[allow(non_snake_case)]
let original_R = (generators.0.alt * r.0, generators.1.alt * r.1);
#[allow(non_snake_case)]
let mut R = original_R;
for i in ((actual + 1) .. (actual + RING_LEN + 1)).map(|i| i % RING_LEN) {
let e = nonces(transcript.clone(), R);
e_0 = G0::Scalar::conditional_select(&e_0, &e.0, usize::ct_eq(&i, &0));
// Solve for the real index
if i == actual {
s[i] = (r.0 + (e.0 * blinding_key.0), r.1 + (e.1 * blinding_key.1));
debug_assert_eq!(calculate_R(generators, s[i], ring[actual], e), original_R);
break;
// Generate a decoy response
} else {
s[i] = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
}
R = calculate_R(generators, s[i], ring[i], e);
}
ClassicAos { e_0, s }
}
fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
&self,
_rng: &mut R,
transcript: T,
generators: (Generators<G0>, Generators<G1>),
_: &mut Self::Context,
ring: &[(G0, G1)]
) -> Result<(), DLEqError> {
debug_assert!((RING_LEN == 2) || (RING_LEN == 4));
let e_0 = (self.e_0, scalar_convert(self.e_0).ok_or(DLEqError::InvalidChallenge)?);
let mut e = None;
for i in 0 .. RING_LEN {
e = Some(R_nonces(transcript.clone(), generators, self.s[i], ring[i], e.unwrap_or(e_0)));
}
// Will panic if the above loop is never run somehow
// If e wasn't an Option, and instead initially set to e_0, it'd always pass
if e_0 != e.unwrap() {
Err(DLEqError::InvalidProof)?;
}
Ok(())
}
#[cfg(feature = "serialize")]
fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
w.write_all(self.e_0.to_repr().as_ref())?;
for i in 0 .. Self::LEN {
w.write_all(self.s[i].0.to_repr().as_ref())?;
w.write_all(self.s[i].1.to_repr().as_ref())?;
}
Ok(())
}
#[cfg(feature = "serialize")]
fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
let e_0 = read_scalar(r)?;
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); RING_LEN];
for i in 0 .. Self::LEN {
s[i] = (read_scalar(r)?, read_scalar(r)?);
}
Ok(ClassicAos { e_0, s })
}
}
#[allow(non_snake_case)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct MultiexpAos<G0: PrimeGroup, G1: PrimeGroup> {
R_0: (G0, G1),
s: [(G0::Scalar, G1::Scalar); 2]
}
impl<G0: PrimeGroup, G1: PrimeGroup> MultiexpAos<G0, G1> {
#[allow(non_snake_case)]
fn R_batch(
generators: (Generators<G0>, Generators<G1>),
s: (G0::Scalar, G1::Scalar),
A: (G0, G1),
e: (G0::Scalar, G1::Scalar)
) -> (Vec<(G0::Scalar, G0)>, Vec<(G1::Scalar, G1)>) {
(vec![(s.0, generators.0.alt), (-e.0, A.0)], vec![(s.1, generators.1.alt), (-e.1, A.1)])
}
}
impl<G0: PrimeGroup, G1: PrimeGroup> RingSignature<G0, G1> for MultiexpAos<G0, G1>
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
type Context = (BatchVerifier<(), G0>, BatchVerifier<(), G1>);
const LEN: usize = 2;
fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: T,
generators: (Generators<G0>, Generators<G1>),
ring: &[(G0, G1)],
actual: usize,
blinding_key: (G0::Scalar, G1::Scalar)
) -> Self {
#[allow(non_snake_case)]
let mut R_0 = (G0::identity(), G1::identity());
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); 2]; // Can't use Self::LEN due to 76200
let r = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
#[allow(non_snake_case)]
let original_R = (generators.0.alt * r.0, generators.1.alt * r.1);
#[allow(non_snake_case)]
let mut R = original_R;
for i in ((actual + 1) .. (actual + Self::LEN + 1)).map(|i| i % Self::LEN) {
if i == 0 {
R_0.0 = R.0;
R_0.1 = R.1;
}
// Solve for the real index
let e = nonces(transcript.clone(), R);
if i == actual {
s[i] = (r.0 + (e.0 * blinding_key.0), r.1 + (e.1 * blinding_key.1));
debug_assert_eq!(calculate_R(generators, s[i], ring[actual], e), original_R);
break;
// Generate a decoy response
} else {
s[i] = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
}
R = calculate_R(generators, s[i], ring[i], e);
}
MultiexpAos { R_0, s }
}
fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
&self,
rng: &mut R,
transcript: T,
generators: (Generators<G0>, Generators<G1>),
batch: &mut Self::Context,
ring: &[(G0, G1)]
) -> Result<(), DLEqError> {
let mut e = nonces(transcript.clone(), self.R_0);
for i in 0 .. (Self::LEN - 1) {
e = R_nonces(transcript.clone(), generators, self.s[i], ring[i], e);
}
let mut statements = Self::R_batch(
generators,
*self.s.last().unwrap(),
*ring.last().unwrap(),
e
);
statements.0.push((-G0::Scalar::one(), self.R_0.0));
statements.1.push((-G1::Scalar::one(), self.R_0.1));
batch.0.queue(&mut *rng, (), statements.0);
batch.1.queue(&mut *rng, (), statements.1);
Ok(())
}
#[cfg(feature = "serialize")]
fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
w.write_all(self.R_0.0.to_bytes().as_ref())?;
w.write_all(self.R_0.1.to_bytes().as_ref())?;
for i in 0 .. Self::LEN {
w.write_all(self.s[i].0.to_repr().as_ref())?;
w.write_all(self.s[i].1.to_repr().as_ref())?;
}
Ok(())
}
#[cfg(feature = "serialize")]
fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
#[allow(non_snake_case)]
let R_0 = (read_point(r)?, read_point(r)?);
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); 2];
for i in 0 .. Self::LEN {
s[i] = (read_scalar(r)?, read_scalar(r)?);
}
Ok(MultiexpAos { R_0, s })
}
}

View file

@ -0,0 +1,217 @@
use rand_core::{RngCore, CryptoRng};
use digest::Digest;
use transcript::Transcript;
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
use crate::{
Generators,
cross_group::{
DLEqError, DLEqProof,
scalar::{scalar_convert, mutual_scalar_from_bytes},
schnorr::SchnorrPoK,
linear::aos::ClassicAos,
bits::Bits
}
};
#[cfg(feature = "serialize")]
use std::io::{Read, Write};
pub type ConciseDLEq<G0, G1> = DLEqProof<
G0,
G1,
ClassicAos<G0, G1, 4>,
ClassicAos<G0, G1, 2>
>;
impl<G0: PrimeGroup, G1: PrimeGroup> ConciseDLEq<G0, G1>
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f: (G0::Scalar, G1::Scalar)
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::initialize_transcript(
transcript,
generators,
((generators.0.primary * f.0), (generators.1.primary * f.1))
);
let poks = (
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
);
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
let mut blinding_key = |rng: &mut R, last| {
let blinding_key = (
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, last),
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, last)
);
if last {
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
}
blinding_key
};
let mut pow_2 = (generators.0.primary, generators.1.primary);
let raw_bits = f.0.to_le_bits();
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
let mut bits = Vec::with_capacity(capacity);
let mut these_bits: u8 = 0;
for (i, bit) in raw_bits.iter().enumerate() {
if i > ((capacity / 2) * 2) {
break;
}
let bit = *bit as u8;
debug_assert_eq!(bit | 1, 1);
if (i % 2) == 0 {
these_bits = bit;
continue;
} else {
these_bits += bit << 1;
}
let last = i == (capacity - 1);
let blinding_key = blinding_key(&mut *rng, last);
bits.push(
Bits::prove(&mut *rng, transcript, generators, i / 2, &mut pow_2, these_bits, blinding_key)
);
}
let mut remainder = None;
if (capacity % 2) == 1 {
let blinding_key = blinding_key(&mut *rng, true);
remainder = Some(
Bits::prove(
&mut *rng,
transcript,
generators,
capacity / 2,
&mut pow_2,
these_bits,
blinding_key
)
);
}
let proof = DLEqProof { bits, remainder, poks };
debug_assert_eq!(
proof.reconstruct_keys(),
(generators.0.primary * f.0, generators.1.primary * f.1)
);
(proof, f)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
/// the output of the passed in Digest. Given the non-standard requirements to achieve
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
/// to safely and securely generate a Scalar, without risk of failure, nor bias
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
/// the relationship between keys would allow breaking all swaps after just one
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
digest: D
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::prove_internal(
rng,
transcript,
generators,
mutual_scalar_from_bytes(digest.finalize().as_ref())
)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
/// scalars until they're safely usable, as needed
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f0: G0::Scalar
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
}
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
pub fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
&self,
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>)
) -> Result<(G0, G1), DLEqError> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
if (self.bits.len() != (capacity / 2).try_into().unwrap()) || (
// These shouldn't be possible, as deserialize ensures this is present for fields with this
// characteristic, and proofs locally generated will have it. Regardless, best to ensure
(self.remainder.is_none() && ((capacity % 2) == 1)) ||
(self.remainder.is_some() && ((capacity % 2) == 0))
) {
return Err(DLEqError::InvalidProofLength);
}
let keys = self.reconstruct_keys();
Self::initialize_transcript(transcript, generators, keys);
if !(
self.poks.0.verify(transcript, generators.0.primary, keys.0) &&
self.poks.1.verify(transcript, generators.1.primary, keys.1)
) {
Err(DLEqError::InvalidProofOfKnowledge)?;
}
let mut pow_2 = (generators.0.primary, generators.1.primary);
for (i, bits) in self.bits.iter().enumerate() {
bits.verify(&mut *rng, transcript, generators, &mut (), i, &mut pow_2)?;
}
if let Some(bit) = &self.remainder {
bit.verify(&mut *rng, transcript, generators, &mut (), self.bits.len(), &mut pow_2)?;
}
Ok(keys)
}
#[cfg(feature = "serialize")]
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
for bit in &self.bits {
bit.serialize(w)?;
}
if let Some(bit) = &self.remainder {
bit.serialize(w)?;
}
self.poks.0.serialize(w)?;
self.poks.1.serialize(w)
}
#[cfg(feature = "serialize")]
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
let mut bits = Vec::with_capacity(capacity.try_into().unwrap());
for _ in 0 .. (capacity / 2) {
bits.push(Bits::deserialize(r)?);
}
let mut remainder = None;
if (capacity % 2) == 1 {
remainder = Some(Bits::deserialize(r)?);
}
Ok(
DLEqProof {
bits,
remainder,
poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?)
}
)
}
}

View file

@ -0,0 +1,182 @@
use rand_core::{RngCore, CryptoRng};
use digest::Digest;
use transcript::Transcript;
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
use multiexp::BatchVerifier;
use crate::{
Generators,
cross_group::{
DLEqError, DLEqProof,
scalar::{scalar_convert, mutual_scalar_from_bytes},
schnorr::SchnorrPoK,
linear::aos::MultiexpAos,
bits::Bits
}
};
#[cfg(feature = "serialize")]
use std::io::{Read, Write};
pub type EfficientDLEq<G0, G1> = DLEqProof<G0, G1, MultiexpAos<G0, G1>, MultiexpAos<G0, G1>>;
impl<G0: PrimeGroup, G1: PrimeGroup> EfficientDLEq<G0, G1>
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f: (G0::Scalar, G1::Scalar)
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::initialize_transcript(
transcript,
generators,
((generators.0.primary * f.0), (generators.1.primary * f.1))
);
let poks = (
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
);
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
let mut blinding_key = |rng: &mut R, last| {
let blinding_key = (
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, last),
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, last)
);
if last {
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
}
blinding_key
};
let mut pow_2 = (generators.0.primary, generators.1.primary);
let raw_bits = f.0.to_le_bits();
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
let mut bits = Vec::with_capacity(capacity);
for (i, bit) in raw_bits.iter().enumerate() {
let bit = *bit as u8;
debug_assert_eq!(bit | 1, 1);
let last = i == (capacity - 1);
let blinding_key = blinding_key(&mut *rng, last);
bits.push(
Bits::prove(&mut *rng, transcript, generators, i, &mut pow_2, bit, blinding_key)
);
if last {
break;
}
}
let proof = DLEqProof { bits, remainder: None, poks };
debug_assert_eq!(
proof.reconstruct_keys(),
(generators.0.primary * f.0, generators.1.primary * f.1)
);
(proof, f)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
/// the output of the passed in Digest. Given the non-standard requirements to achieve
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
/// to safely and securely generate a Scalar, without risk of failure, nor bias
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
/// the relationship between keys would allow breaking all swaps after just one
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
digest: D
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::prove_internal(
rng,
transcript,
generators,
mutual_scalar_from_bytes(digest.finalize().as_ref())
)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
/// scalars until they're safely usable, as needed
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f0: G0::Scalar
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
}
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
pub fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
&self,
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>)
) -> Result<(G0, G1), DLEqError> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
// The latter case shouldn't be possible yet would explicitly be invalid
if (self.bits.len() != capacity.try_into().unwrap()) || self.remainder.is_some() {
return Err(DLEqError::InvalidProofLength);
}
let keys = self.reconstruct_keys();
Self::initialize_transcript(transcript, generators, keys);
// TODO: Batch
if !(
self.poks.0.verify(transcript, generators.0.primary, keys.0) &&
self.poks.1.verify(transcript, generators.1.primary, keys.1)
) {
Err(DLEqError::InvalidProofOfKnowledge)?;
}
let mut batch = (
BatchVerifier::new(self.bits.len() * 3),
BatchVerifier::new(self.bits.len() * 3)
);
let mut pow_2 = (generators.0.primary, generators.1.primary);
for (i, bits) in self.bits.iter().enumerate() {
bits.verify(&mut *rng, transcript, generators, &mut batch, i, &mut pow_2)?;
}
if (!batch.0.verify_vartime()) || (!batch.1.verify_vartime()) {
Err(DLEqError::InvalidProof)?;
}
Ok(keys)
}
#[cfg(feature = "serialize")]
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
for bit in &self.bits {
bit.serialize(w)?;
}
self.poks.0.serialize(w)?;
self.poks.1.serialize(w)
}
#[cfg(feature = "serialize")]
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
let mut bits = Vec::with_capacity(capacity.try_into().unwrap());
for _ in 0 .. capacity {
bits.push(Bits::deserialize(r)?);
}
Ok(
DLEqProof {
bits,
remainder: None,
poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?)
}
)
}
}

View file

@ -0,0 +1,7 @@
pub(crate) mod aos;
mod concise;
pub use concise::ConciseDLEq;
mod efficient;
pub use efficient::EfficientDLEq;

View file

@ -1,26 +1,24 @@
use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use digest::Digest;
use subtle::{ConstantTimeEq, ConditionallySelectable};
use transcript::Transcript;
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
use group::{ff::{PrimeField, PrimeFieldBits}, prime::PrimeGroup};
use crate::Generators;
pub mod scalar;
use scalar::{scalar_convert, mutual_scalar_from_bytes};
pub(crate) mod schnorr;
use schnorr::SchnorrPoK;
mod bits;
use bits::{RingSignature, Bits};
pub mod linear;
#[cfg(feature = "serialize")]
use std::io::{Read, Write};
#[cfg(feature = "serialize")]
use crate::read_scalar;
use std::io::Read;
#[cfg(feature = "serialize")]
pub(crate) fn read_point<R: Read, G: PrimeGroup>(r: &mut R) -> std::io::Result<G> {
@ -33,187 +31,6 @@ pub(crate) fn read_point<R: Read, G: PrimeGroup>(r: &mut R) -> std::io::Result<G
Ok(point.unwrap())
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Bits<G0: PrimeGroup, G1: PrimeGroup, const POSSIBLE_VALUES: usize> {
commitments: (G0, G1),
// Merged challenges have a slight security reduction, yet one already applied to the scalar
// being proven for, and this saves ~8kb. Alternatively, challenges could be redefined as a seed,
// present here, which is then hashed for each of the two challenges, remaining unbiased/unique
// while maintaining the bandwidth savings, yet also while adding 252 hashes for
// Secp256k1/Ed25519
e_0: G0::Scalar,
s: [(G0::Scalar, G1::Scalar); POSSIBLE_VALUES]
}
impl<G0: PrimeGroup, G1: PrimeGroup, const POSSIBLE_VALUES: usize> Bits<G0, G1, POSSIBLE_VALUES>
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
pub fn transcript<T: Transcript>(transcript: &mut T, i: usize, commitments: (G0, G1)) {
if i == 0 {
transcript.domain_separate(b"cross_group_dleq");
}
transcript.append_message(b"bit_group", &u16::try_from(i).unwrap().to_le_bytes());
transcript.append_message(b"commitment_0", commitments.0.to_bytes().as_ref());
transcript.append_message(b"commitment_1", commitments.1.to_bytes().as_ref());
}
#[allow(non_snake_case)]
fn nonces<T: Transcript>(mut transcript: T, nonces: (G0, G1)) -> (G0::Scalar, G1::Scalar) {
transcript.append_message(b"nonce_0", nonces.0.to_bytes().as_ref());
transcript.append_message(b"nonce_1", nonces.1.to_bytes().as_ref());
mutual_scalar_from_bytes(transcript.challenge(b"challenge").as_ref())
}
#[allow(non_snake_case)]
fn R(
generators: (Generators<G0>, Generators<G1>),
s: (G0::Scalar, G1::Scalar),
A: (G0, G1),
e: (G0::Scalar, G1::Scalar)
) -> (G0, G1) {
(((generators.0.alt * s.0) - (A.0 * e.0)), ((generators.1.alt * s.1) - (A.1 * e.1)))
}
#[allow(non_snake_case)]
fn R_nonces<T: Transcript>(
transcript: T,
generators: (Generators<G0>, Generators<G1>),
s: (G0::Scalar, G1::Scalar),
A: (G0, G1),
e: (G0::Scalar, G1::Scalar)
) -> (G0::Scalar, G1::Scalar) {
Self::nonces(transcript, Self::R(generators, s, A, e))
}
fn ring(pow_2: (G0, G1), commitments: (G0, G1)) -> [(G0, G1); POSSIBLE_VALUES] {
let mut res = [(G0::identity(), G1::identity()); POSSIBLE_VALUES];
res[POSSIBLE_VALUES - 1] = commitments;
for i in (0 .. (POSSIBLE_VALUES - 1)).rev() {
res[i] = (res[i + 1].0 - pow_2.0, res[i + 1].1 - pow_2.1);
}
res
}
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
i: usize,
pow_2: &mut (G0, G1),
bits: u8,
blinding_key: (G0::Scalar, G1::Scalar)
) -> Bits<G0, G1, POSSIBLE_VALUES> {
// While it is possible to use larger values, it's not efficient to do so
// 2 + 2 == 2^2, yet 2 + 2 + 2 < 2^3
debug_assert!((POSSIBLE_VALUES == 2) || (POSSIBLE_VALUES == 4));
let mut commitments = (
(generators.0.alt * blinding_key.0),
(generators.1.alt * blinding_key.1)
);
commitments.0 += pow_2.0 * G0::Scalar::from(bits.into());
commitments.1 += pow_2.1 * G1::Scalar::from(bits.into());
Self::transcript(transcript, i, commitments);
let ring = Self::ring(*pow_2, commitments);
// Invert the index to get the raw blinding key's position in the ring
let actual = POSSIBLE_VALUES - 1 - usize::from(bits);
let mut e_0 = G0::Scalar::zero();
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); POSSIBLE_VALUES];
let r = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
#[allow(non_snake_case)]
let original_R = (generators.0.alt * r.0, generators.1.alt * r.1);
#[allow(non_snake_case)]
let mut R = original_R;
for i in ((actual + 1) .. (actual + POSSIBLE_VALUES + 1)).map(|i| i % POSSIBLE_VALUES) {
let e = Self::nonces(transcript.clone(), R);
e_0 = G0::Scalar::conditional_select(&e_0, &e.0, usize::ct_eq(&i, &0));
// Solve for the real index
if i == actual {
s[i] = (r.0 + (e.0 * blinding_key.0), r.1 + (e.1 * blinding_key.1));
debug_assert_eq!(Self::R(generators, s[i], ring[actual], e), original_R);
break;
// Generate a decoy response
} else {
s[i] = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
}
R = Self::R(generators, s[i], ring[i], e);
}
pow_2.0 = pow_2.0.double();
pow_2.1 = pow_2.1.double();
if POSSIBLE_VALUES == 4 {
pow_2.0 = pow_2.0.double();
pow_2.1 = pow_2.1.double();
}
Bits { commitments, e_0, s }
}
pub fn verify<T: Clone + Transcript>(
&self,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
i: usize,
pow_2: &mut (G0, G1)
) -> Result<(), DLEqError> {
debug_assert!((POSSIBLE_VALUES == 2) || (POSSIBLE_VALUES == 4));
Self::transcript(transcript, i, self.commitments);
let ring = Self::ring(*pow_2, self.commitments);
let e_0 = (self.e_0, scalar_convert(self.e_0).ok_or(DLEqError::InvalidChallenge)?);
let mut e = None;
for i in 0 .. POSSIBLE_VALUES {
e = Some(
Self::R_nonces(transcript.clone(), generators, self.s[i], ring[i], e.unwrap_or(e_0))
);
}
// Will panic if the above loop is never run somehow
// If e wasn't an Option, and instead initially set to e_0, it'd always pass
if e_0 != e.unwrap() {
return Err(DLEqError::InvalidProof);
}
pow_2.0 = pow_2.0.double();
pow_2.1 = pow_2.1.double();
if POSSIBLE_VALUES == 4 {
pow_2.0 = pow_2.0.double();
pow_2.1 = pow_2.1.double();
}
Ok(())
}
#[cfg(feature = "serialize")]
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
w.write_all(self.commitments.0.to_bytes().as_ref())?;
w.write_all(self.commitments.1.to_bytes().as_ref())?;
w.write_all(self.e_0.to_repr().as_ref())?;
for i in 0 .. POSSIBLE_VALUES {
w.write_all(self.s[i].0.to_repr().as_ref())?;
w.write_all(self.s[i].1.to_repr().as_ref())?;
}
Ok(())
}
#[cfg(feature = "serialize")]
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Bits<G0, G1, POSSIBLE_VALUES>> {
let commitments = (read_point(r)?, read_point(r)?);
let e_0 = read_scalar(r)?;
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); POSSIBLE_VALUES];
for i in 0 .. POSSIBLE_VALUES {
s[i] = (read_scalar(r)?, read_scalar(r)?);
}
Ok(Bits { commitments, e_0, s })
}
}
#[derive(Error, PartialEq, Eq, Debug)]
pub enum DLEqError {
#[error("invalid proof of knowledge")]
@ -229,15 +46,24 @@ pub enum DLEqError {
// Debug would be such a dump of data this likely isn't helpful, but at least it's available to
// anyone who wants it
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct DLEqProof<G0: PrimeGroup, G1: PrimeGroup> {
bits: Vec<Bits<G0, G1, 4>>,
remainder: Option<Bits<G0, G1, 2>>,
pub struct DLEqProof<
G0: PrimeGroup,
G1: PrimeGroup,
RING: RingSignature<G0, G1>,
REM: RingSignature<G0, G1>
> where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
bits: Vec<Bits<G0, G1, RING>>,
remainder: Option<Bits<G0, G1, REM>>,
poks: (SchnorrPoK<G0>, SchnorrPoK<G1>)
}
impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
fn initialize_transcript<T: Transcript>(
impl<
G0: PrimeGroup,
G1: PrimeGroup,
RING: RingSignature<G0, G1>,
REM: RingSignature<G0, G1>
> DLEqProof<G0, G1, RING, REM> where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
pub(crate) fn initialize_transcript<T: Transcript>(
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
keys: (G0, G1)
@ -249,7 +75,7 @@ impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
transcript.append_message(b"point_1", keys.1.to_bytes().as_ref());
}
fn blinding_key<R: RngCore + CryptoRng, F: PrimeField>(
pub(crate) fn blinding_key<R: RngCore + CryptoRng, F: PrimeField>(
rng: &mut R,
total: &mut F,
last: bool
@ -264,195 +90,16 @@ impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
}
fn reconstruct_keys(&self) -> (G0, G1) {
let remainder = self.remainder
.as_ref()
.map(|bit| bit.commitments)
.unwrap_or((G0::identity(), G1::identity()));
(
self.bits.iter().map(|bit| bit.commitments.0).sum::<G0>() + remainder.0,
self.bits.iter().map(|bit| bit.commitments.1).sum::<G1>() + remainder.1
)
}
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f: (G0::Scalar, G1::Scalar)
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::initialize_transcript(
transcript,
generators,
((generators.0.primary * f.0), (generators.1.primary * f.1))
let mut res = (
self.bits.iter().map(|bit| bit.commitments.0).sum::<G0>(),
self.bits.iter().map(|bit| bit.commitments.1).sum::<G1>()
);
let poks = (
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
);
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
let mut blinding_key = |rng: &mut R, last| {
let blinding_key = (
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, last),
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, last)
);
if last {
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
}
blinding_key
};
let mut pow_2 = (generators.0.primary, generators.1.primary);
let raw_bits = f.0.to_le_bits();
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
let mut bits = Vec::with_capacity(capacity);
let mut these_bits: u8 = 0;
for (i, bit) in raw_bits.iter().enumerate() {
if i > ((capacity / 2) * 2) {
break;
}
let bit = *bit as u8;
debug_assert_eq!(bit | 1, 1);
if (i % 2) == 0 {
these_bits = bit;
continue;
} else {
these_bits += bit << 1;
}
let last = i == (capacity - 1);
let blinding_key = blinding_key(&mut *rng, last);
bits.push(
Bits::prove(&mut *rng, transcript, generators, i / 2, &mut pow_2, these_bits, blinding_key)
);
}
let mut remainder = None;
if (capacity % 2) == 1 {
let blinding_key = blinding_key(&mut *rng, true);
remainder = Some(
Bits::prove(
&mut *rng,
transcript,
generators,
capacity / 2,
&mut pow_2,
these_bits,
blinding_key
)
);
}
let proof = DLEqProof { bits, remainder, poks };
debug_assert_eq!(
proof.reconstruct_keys(),
(generators.0.primary * f.0, generators.1.primary * f.1)
);
(proof, f)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
/// the output of the passed in Digest. Given the non-standard requirements to achieve
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
/// to safely and securely generate a Scalar, without risk of failure, nor bias
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
/// the relationship between keys would allow breaking all swaps after just one
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
digest: D
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::prove_internal(
rng,
transcript,
generators,
mutual_scalar_from_bytes(digest.finalize().as_ref())
)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
/// scalars until they're safely usable, as needed
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f0: G0::Scalar
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
}
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
pub fn verify<T: Clone + Transcript>(
&self,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>)
) -> Result<(G0, G1), DLEqError> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
if (self.bits.len() != (capacity / 2).try_into().unwrap()) || (
// This shouldn't be possible, as deserialize ensures this is present for fields with this
// characteristic, and proofs locally generated will have it. Regardless, best to ensure
self.remainder.is_none() && ((capacity % 2) == 1)
) {
return Err(DLEqError::InvalidProofLength);
}
let keys = self.reconstruct_keys();
Self::initialize_transcript(transcript, generators, keys);
if !(
self.poks.0.verify(transcript, generators.0.primary, keys.0) &&
self.poks.1.verify(transcript, generators.1.primary, keys.1)
) {
Err(DLEqError::InvalidProofOfKnowledge)?;
}
let mut pow_2 = (generators.0.primary, generators.1.primary);
for (i, bits) in self.bits.iter().enumerate() {
bits.verify(transcript, generators, i, &mut pow_2)?;
}
if let Some(bit) = &self.remainder {
bit.verify(transcript, generators, self.bits.len(), &mut pow_2)?;
res.0 += bit.commitments.0;
res.1 += bit.commitments.1;
}
Ok(keys)
}
#[cfg(feature = "serialize")]
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
for bit in &self.bits {
bit.serialize(w)?;
}
if let Some(bit) = &self.remainder {
bit.serialize(w)?;
}
self.poks.0.serialize(w)?;
self.poks.1.serialize(w)
}
#[cfg(feature = "serialize")]
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<DLEqProof<G0, G1>> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
let mut bits = Vec::with_capacity(capacity.try_into().unwrap());
for _ in 0 .. (capacity / 2) {
bits.push(Bits::deserialize(r)?);
}
let mut remainder = None;
if (capacity % 2) == 1 {
remainder = Some(Bits::deserialize(r)?);
}
Ok(
DLEqProof {
bits,
remainder,
poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?)
}
)
res
}
}

View file

@ -0,0 +1,98 @@
use rand_core::{RngCore, OsRng};
use ff::{Field, PrimeField};
use k256::Scalar;
#[cfg(feature = "serialize")]
use k256::ProjectivePoint;
#[cfg(feature = "serialize")]
use dalek_ff_group::EdwardsPoint;
use blake2::{Digest, Blake2b512};
use crate::{
cross_group::{scalar::mutual_scalar_from_bytes, linear::ConciseDLEq},
tests::cross_group::{transcript, generators}
};
#[test]
fn test_linear_concise_cross_group_dleq() {
let generators = generators();
for i in 0 .. 1 {
let (proof, keys) = if i == 0 {
let mut seed = [0; 32];
OsRng.fill_bytes(&mut seed);
ConciseDLEq::prove(
&mut OsRng,
&mut transcript(),
generators,
Blake2b512::new().chain_update(seed)
)
} else {
let mut key;
let mut res;
while {
key = Scalar::random(&mut OsRng);
res = ConciseDLEq::prove_without_bias(
&mut OsRng,
&mut transcript(),
generators,
key
);
res.is_none()
} {}
let res = res.unwrap();
assert_eq!(key, res.1.0);
res
};
let public_keys = proof.verify(&mut OsRng, &mut transcript(), generators).unwrap();
assert_eq!(generators.0.primary * keys.0, public_keys.0);
assert_eq!(generators.1.primary * keys.1, public_keys.1);
#[cfg(feature = "serialize")]
{
let mut buf = vec![];
proof.serialize(&mut buf).unwrap();
let deserialized = ConciseDLEq::<ProjectivePoint, EdwardsPoint>::deserialize(
&mut std::io::Cursor::new(&buf)
).unwrap();
assert_eq!(proof, deserialized);
deserialized.verify(&mut OsRng, &mut transcript(), generators).unwrap();
}
}
}
#[test]
fn test_remainder() {
// Uses Secp256k1 for both to achieve an odd capacity of 255
assert_eq!(Scalar::CAPACITY, 255);
let generators = (generators().0, generators().0);
let keys = mutual_scalar_from_bytes(&[0xFF; 32]);
assert_eq!(keys.0, keys.1);
let (proof, res) = ConciseDLEq::prove_without_bias(
&mut OsRng,
&mut transcript(),
generators,
keys.0
).unwrap();
assert_eq!(keys, res);
let public_keys = proof.verify(&mut OsRng, &mut transcript(), generators).unwrap();
assert_eq!(generators.0.primary * keys.0, public_keys.0);
assert_eq!(generators.1.primary * keys.1, public_keys.1);
#[cfg(feature = "serialize")]
{
let mut buf = vec![];
proof.serialize(&mut buf).unwrap();
let deserialized = ConciseDLEq::<ProjectivePoint, ProjectivePoint>::deserialize(
&mut std::io::Cursor::new(&buf)
).unwrap();
assert_eq!(proof, deserialized);
deserialized.verify(&mut OsRng, &mut transcript(), generators).unwrap();
}
}

View file

@ -0,0 +1,66 @@
use rand_core::{RngCore, OsRng};
use ff::Field;
use k256::Scalar;
#[cfg(feature = "serialize")]
use k256::ProjectivePoint;
#[cfg(feature = "serialize")]
use dalek_ff_group::EdwardsPoint;
use blake2::{Digest, Blake2b512};
use crate::{
cross_group::linear::EfficientDLEq,
tests::cross_group::{transcript, generators}
};
#[test]
fn test_linear_efficient_cross_group_dleq() {
let generators = generators();
for i in 0 .. 1 {
let (proof, keys) = if i == 0 {
let mut seed = [0; 32];
OsRng.fill_bytes(&mut seed);
EfficientDLEq::prove(
&mut OsRng,
&mut transcript(),
generators,
Blake2b512::new().chain_update(seed)
)
} else {
let mut key;
let mut res;
while {
key = Scalar::random(&mut OsRng);
res = EfficientDLEq::prove_without_bias(
&mut OsRng,
&mut transcript(),
generators,
key
);
res.is_none()
} {}
let res = res.unwrap();
assert_eq!(key, res.1.0);
res
};
let public_keys = proof.verify(&mut OsRng, &mut transcript(), generators).unwrap();
assert_eq!(generators.0.primary * keys.0, public_keys.0);
assert_eq!(generators.1.primary * keys.1, public_keys.1);
#[cfg(feature = "serialize")]
{
let mut buf = vec![];
proof.serialize(&mut buf).unwrap();
let deserialized = EfficientDLEq::<ProjectivePoint, EdwardsPoint>::deserialize(
&mut std::io::Cursor::new(&buf)
).unwrap();
assert_eq!(proof, deserialized);
deserialized.verify(&mut OsRng, &mut transcript(), generators).unwrap();
}
}
}

View file

@ -0,0 +1,2 @@
mod concise;
mod efficient;

View file

@ -2,7 +2,7 @@ mod scalar;
mod schnorr;
use hex_literal::hex;
use rand_core::{RngCore, OsRng};
use rand_core::OsRng;
use ff::{Field, PrimeField};
use group::{Group, GroupEncoding};
@ -10,17 +10,17 @@ use group::{Group, GroupEncoding};
use k256::{Scalar, ProjectivePoint};
use dalek_ff_group::{self as dfg, EdwardsPoint, CompressedEdwardsY};
use blake2::{Digest, Blake2b512};
use transcript::RecommendedTranscript;
use crate::{Generators, cross_group::{DLEqProof, scalar::mutual_scalar_from_bytes}};
use crate::{Generators, cross_group::linear::EfficientDLEq};
fn transcript() -> RecommendedTranscript {
mod linear;
pub(crate) fn transcript() -> RecommendedTranscript {
RecommendedTranscript::new(b"Cross-Group DLEq Proof Test")
}
fn generators() -> (Generators<ProjectivePoint>, Generators<EdwardsPoint>) {
pub(crate) fn generators() -> (Generators<ProjectivePoint>, Generators<EdwardsPoint>) {
(
Generators::new(
ProjectivePoint::GENERATOR,
@ -46,7 +46,7 @@ fn test_rejection_sampling() {
}
assert!(
DLEqProof::prove_without_bias(
EfficientDLEq::prove_without_bias(
&mut OsRng,
&mut RecommendedTranscript::new(b""),
generators(),
@ -54,85 +54,3 @@ fn test_rejection_sampling() {
).is_none()
);
}
#[test]
fn test_cross_group_dleq() {
let generators = generators();
for i in 0 .. 2 {
let (proof, keys) = if i == 0 {
let mut seed = [0; 32];
OsRng.fill_bytes(&mut seed);
DLEqProof::prove(
&mut OsRng,
&mut transcript(),
generators,
Blake2b512::new().chain_update(seed)
)
} else {
let mut key;
let mut res;
while {
key = Scalar::random(&mut OsRng);
res = DLEqProof::prove_without_bias(
&mut OsRng,
&mut transcript(),
generators,
key
);
res.is_none()
} {}
let res = res.unwrap();
assert_eq!(key, res.1.0);
res
};
let public_keys = proof.verify(&mut transcript(), generators).unwrap();
assert_eq!(generators.0.primary * keys.0, public_keys.0);
assert_eq!(generators.1.primary * keys.1, public_keys.1);
#[cfg(feature = "serialize")]
{
let mut buf = vec![];
proof.serialize(&mut buf).unwrap();
let deserialized = DLEqProof::<ProjectivePoint, EdwardsPoint>::deserialize(
&mut std::io::Cursor::new(&buf)
).unwrap();
assert_eq!(proof, deserialized);
deserialized.verify(&mut transcript(), generators).unwrap();
}
}
}
#[test]
fn test_remainder() {
// Uses Secp256k1 for both to achieve an odd capacity of 255
assert_eq!(Scalar::CAPACITY, 255);
let generators = (generators().0, generators().0);
let keys = mutual_scalar_from_bytes(&[0xFF; 32]);
assert_eq!(keys.0, keys.1);
let (proof, res) = DLEqProof::prove_without_bias(
&mut OsRng,
&mut transcript(),
generators,
keys.0
).unwrap();
assert_eq!(keys, res);
let public_keys = proof.verify(&mut transcript(), generators).unwrap();
assert_eq!(generators.0.primary * keys.0, public_keys.0);
assert_eq!(generators.1.primary * keys.1, public_keys.1);
#[cfg(feature = "serialize")]
{
let mut buf = vec![];
proof.serialize(&mut buf).unwrap();
let deserialized = DLEqProof::<ProjectivePoint, ProjectivePoint>::deserialize(
&mut std::io::Cursor::new(&buf)
).unwrap();
assert_eq!(proof, deserialized);
deserialized.verify(&mut transcript(), generators).unwrap();
}
}