Consolidate Schnorr code in FROST

This commit is contained in:
Luke Parker 2022-05-25 00:22:00 -04:00
parent d67d6f2f98
commit 1eaf2f897b
No known key found for this signature in database
GPG key ID: F9F1386DB1E119B6
4 changed files with 132 additions and 71 deletions

View file

@ -2,11 +2,10 @@ use core::{marker::PhantomData, fmt::Debug};
use rand_core::{RngCore, CryptoRng};
use group::Group;
use transcript::Transcript;
use crate::{Curve, FrostError, MultisigView};
use crate::{Curve, FrostError, MultisigView, schnorr};
pub use schnorr::SchnorrSignature;
/// Algorithm to use FROST with
pub trait Algorithm<C: Curve>: Clone {
@ -103,13 +102,6 @@ impl<C: Curve, H: Hram<C>> Schnorr<C, H> {
}
}
#[allow(non_snake_case)]
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct SchnorrSignature<C: Curve> {
pub R: C::G,
pub s: C::F,
}
/// Implementation of Schnorr signatures for use with FROST
impl<C: Curve, H: Hram<C>> Algorithm<C> for Schnorr<C, H> {
type Transcript = IetfTranscript;
@ -148,13 +140,13 @@ impl<C: Curve, H: Hram<C>> Algorithm<C> for Schnorr<C, H> {
) -> C::F {
let c = H::hram(&nonce_sum, &params.group_key(), msg);
self.c = Some(c);
nonce + (params.secret_share() * c)
schnorr::sign::<C>(params.secret_share(), nonce, c).s
}
fn verify(&self, group_key: C::G, nonce: C::G, sum: C::F) -> Option<Self::Signature> {
if (C::generator_table() * sum) + (C::G::identity() - (group_key * self.c.unwrap())) == nonce {
Some(SchnorrSignature { R: nonce, s: sum })
let sig = SchnorrSignature { R: nonce, s: sum };
if schnorr::verify::<C>(group_key, self.c.unwrap(), &sig) {
Some(sig)
} else {
None
}
@ -166,6 +158,10 @@ impl<C: Curve, H: Hram<C>> Algorithm<C> for Schnorr<C, H> {
nonce: C::G,
share: C::F,
) -> bool {
(C::generator_table() * share) == (nonce + (verification_share * self.c.unwrap()))
schnorr::verify::<C>(
verification_share,
self.c.unwrap(),
&SchnorrSignature { R: nonce, s: share}
)
}
}

View file

@ -4,9 +4,12 @@ use std::collections::HashMap;
use rand_core::{RngCore, CryptoRng};
use ff::{Field, PrimeField};
use group::Group;
use crate::{Curve, MultisigParams, MultisigKeys, FrostError, validate_map};
use crate::{
Curve, MultisigParams, MultisigKeys, FrostError,
schnorr::{self, SchnorrSignature},
validate_map
};
#[allow(non_snake_case)]
fn challenge<C: Curve>(l: u16, context: &str, R: &[u8], Am: &[u8]) -> C::F {
@ -42,19 +45,24 @@ fn generate_key_r1<R: RngCore + CryptoRng, C: Curve>(
}
// Step 2: Provide a proof of knowledge
// This can be deterministic as the PoK is a singleton never opened up to cooperative discussion
// There's also no reason to spend the time and effort to make this deterministic besides a
// general obsession with canonicity and determinism
let r = C::F::random(rng);
#[allow(non_snake_case)]
let R = C::generator_table() * r;
let s = r + (
coefficients[0] * challenge::<C>(params.i(), context, &C::G_to_bytes(&R), &serialized)
serialized.extend(
schnorr::sign::<C>(
coefficients[0],
// This could be deterministic as the PoK is a singleton never opened up to cooperative
// discussion
// There's no reason to spend the time and effort to make this deterministic besides a
// general obsession with canonicity and determinism though
r,
challenge::<C>(
params.i(),
context,
&C::G_to_bytes(&(C::generator_table() * r)),
&serialized
)
).serialize()
);
serialized.extend(&C::G_to_bytes(&R));
serialized.extend(&C::F_to_bytes(&s));
// Step 4: Broadcast
(coefficients, serialized)
}
@ -88,9 +96,7 @@ fn verify_r1<R: RngCore + CryptoRng, C: Curve>(
&serialized[&l][commitments_len + C::G_len() ..]
).map_err(|_| FrostError::InvalidProofOfKnowledge(l));
let mut first = true;
let mut scalars = Vec::with_capacity((usize::from(params.n()) - 1) * 3);
let mut points = Vec::with_capacity((usize::from(params.n()) - 1) * 3);
let mut signatures = Vec::with_capacity(usize::from(params.n() - 1));
for l in 1 ..= params.n() {
let mut these_commitments = vec![];
for c in 0 .. usize::from(params.t()) {
@ -100,54 +106,29 @@ fn verify_r1<R: RngCore + CryptoRng, C: Curve>(
).map_err(|_| FrostError::InvalidCommitment(l.try_into().unwrap()))?
);
}
commitments.insert(l, these_commitments);
// Don't bother validating our own proof of knowledge
if l == params.i() {
continue;
if l != params.i() {
// Step 5: Validate each proof of knowledge
// This is solely the prep step for the latter batch verification
signatures.push((
l,
these_commitments[0],
challenge::<C>(l, context, R_bytes(l), Am(l)),
SchnorrSignature::<C> { R: R(l)?, s: s(l)? }
));
}
// Step 5: Validate each proof of knowledge (prep)
let mut u = C::F::one();
if !first {
u = C::F::random(&mut *rng);
}
// uR
scalars.push(u);
points.push(R(l)?);
// -usG
scalars.push(-s(l)? * u);
points.push(C::generator());
// ucA
let c = challenge::<C>(l, context, R_bytes(l), Am(l));
scalars.push(if first { first = false; c } else { c * u});
points.push(commitments[&l][0]);
commitments.insert(l, these_commitments);
}
// Step 5: Implementation
// Uses batch verification to optimize the success case dramatically
// On failure, the cost is now this + blame, yet that should happen infrequently
// s = r + ca
// sG == R + cA
// R + cA - sG == 0
if C::multiexp_vartime(&scalars, &points) != C::G::identity() {
for l in 1 ..= params.n() {
if l == params.i() {
continue;
}
if (C::generator_table() * s(l)?) != (
R(l)? + (commitments[&l][0] * challenge::<C>(l, context, R_bytes(l), Am(l)))
) {
Err(FrostError::InvalidProofOfKnowledge(l))?;
}
schnorr::batch_verify(rng, &signatures).map_err(
|l| if l == 0 {
FrostError::InternalError("batch validation is broken".to_string())
} else {
FrostError::InvalidProofOfKnowledge(l)
}
Err(FrostError::InternalError("batch validation is broken".to_string()))?;
}
)?;
Ok(commitments)
}

View file

@ -8,6 +8,8 @@ use group::{Group, GroupOps, ScalarMul};
pub use multiexp::multiexp_vartime;
mod schnorr;
pub mod key_gen;
pub mod algorithm;
pub mod sign;

View file

@ -0,0 +1,82 @@
use rand_core::{RngCore, CryptoRng};
use ff::Field;
use group::Group;
use crate::Curve;
#[allow(non_snake_case)]
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct SchnorrSignature<C: Curve> {
pub R: C::G,
pub s: C::F,
}
impl<C: Curve> SchnorrSignature<C> {
pub fn serialize(&self) -> Vec<u8> {
let mut res = Vec::with_capacity(C::G_len() + C::F_len());
res.extend(C::G_to_bytes(&self.R));
res.extend(C::F_to_bytes(&self.s));
res
}
}
pub(crate) fn sign<C: Curve>(
private_key: C::F,
nonce: C::F,
challenge: C::F
) -> SchnorrSignature<C> {
SchnorrSignature {
R: C::generator_table() * nonce,
s: nonce + (private_key * challenge)
}
}
pub(crate) fn verify<C: Curve>(
public_key: C::G,
challenge: C::F,
signature: &SchnorrSignature<C>
) -> bool {
(C::generator_table() * signature.s) == (signature.R + (public_key * challenge))
}
pub(crate) fn batch_verify<C: Curve, R: RngCore + CryptoRng>(
rng: &mut R,
triplets: &[(u16, C::G, C::F, SchnorrSignature<C>)]
) -> Result<(), u16> {
let mut first = true;
let mut scalars = Vec::with_capacity(triplets.len() * 3);
let mut points = Vec::with_capacity(triplets.len() * 3);
for triple in triplets {
let mut u = C::F::one();
if !first {
u = C::F::random(&mut *rng);
}
// uR
scalars.push(u);
points.push(triple.3.R);
// -usG
scalars.push(-triple.3.s * u);
points.push(C::generator());
// ucA
scalars.push(if first { first = false; triple.2 } else { triple.2 * u});
points.push(triple.1);
}
// s = r + ca
// sG == R + cA
// R + cA - sG == 0
if C::multiexp_vartime(&scalars, &points) == C::G::identity() {
Ok(())
} else {
for triple in triplets {
if !verify::<C>(triple.1, triple.2, &triple.3) {
Err(triple.0)?;
}
}
Err(0)
}
}