mirror of
https://github.com/serai-dex/serai.git
synced 2024-12-25 13:09:30 +00:00
Report a Change Output with every Eventuality to ensure we don't fall out of synchrony
This commit is contained in:
parent
702b4c860c
commit
1e1b821d34
4 changed files with 132 additions and 33 deletions
|
@ -61,7 +61,29 @@ impl primitives::Block for FullEpoch {
|
||||||
// Associate all outputs with the latest active key
|
// Associate all outputs with the latest active key
|
||||||
// We don't associate these with the current key within the SC as that'll cause outputs to be
|
// We don't associate these with the current key within the SC as that'll cause outputs to be
|
||||||
// marked for forwarding if the SC is delayed to actually rotate
|
// marked for forwarding if the SC is delayed to actually rotate
|
||||||
self.instructions.iter().cloned().map(|instruction| Output { key, instruction }).collect()
|
let mut outputs: Vec<_> = self
|
||||||
|
.instructions
|
||||||
|
.iter()
|
||||||
|
.cloned()
|
||||||
|
.map(|instruction| Output::Output { key, instruction })
|
||||||
|
.collect();
|
||||||
|
|
||||||
|
/*
|
||||||
|
The scanner requires a change output be associated with every Eventuality that came from
|
||||||
|
fulfilling payments, unless said Eventuality descends from an Eventuality meeting that
|
||||||
|
requirement from the same fulfillment. This ensures we have a fully populated Eventualities
|
||||||
|
set by the time we process the block which has an Eventuality.
|
||||||
|
|
||||||
|
Accordingly, for any block with an Eventuality completion, we claim there's a Change output
|
||||||
|
so that the block is flagged. Ethereum doesn't actually have Change outputs, yet the scanner
|
||||||
|
won't report them to Substrate, and the Smart Contract scheduler will drop any/all outputs
|
||||||
|
passed to it (handwaving their balances as present within the Smart Contract).
|
||||||
|
*/
|
||||||
|
if !self.executed.is_empty() {
|
||||||
|
outputs.push(Output::Eventuality { key, nonce: self.executed.first().unwrap().nonce() });
|
||||||
|
}
|
||||||
|
|
||||||
|
outputs
|
||||||
}
|
}
|
||||||
|
|
||||||
#[allow(clippy::type_complexity)]
|
#[allow(clippy::type_complexity)]
|
||||||
|
@ -85,15 +107,17 @@ impl primitives::Block for FullEpoch {
|
||||||
"Router emitted distinct event for nonce {}",
|
"Router emitted distinct event for nonce {}",
|
||||||
executed.nonce()
|
executed.nonce()
|
||||||
);
|
);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
The transaction ID is used to determine how internal outputs from this transaction should
|
The transaction ID is used to determine how internal outputs from this transaction should
|
||||||
be handled (if they were actually internal or if they were just to an internal address).
|
be handled (if they were actually internal or if they were just to an internal address).
|
||||||
The Ethereum integration doesn't have internal addresses, and this transaction wasn't made
|
The Ethereum integration doesn't use internal addresses, and only uses internal outputs to
|
||||||
by Serai. It was simply authorized by Serai yet may or may not be associated with other
|
flag a block as having an Eventuality. Those internal outputs will always be scanned, and
|
||||||
actions we don't want to flag as our own.
|
while they may be dropped/kept by this ID, the scheduler will then always drop them.
|
||||||
|
Accordingly, we have free reign as to what to set the transaction ID to.
|
||||||
|
|
||||||
Accordingly, we set the transaction ID to the nonce. This is unique barring someone finding
|
We set the ID to the nonce as it's the most helpful value and unique barring someone
|
||||||
the preimage which hashes to this nonce, and won't cause any other data to be associated.
|
finding the premise for this as a hash.
|
||||||
*/
|
*/
|
||||||
let mut tx_id = [0; 32];
|
let mut tx_id = [0; 32];
|
||||||
tx_id[.. 8].copy_from_slice(executed.nonce().to_le_bytes().as_slice());
|
tx_id[.. 8].copy_from_slice(executed.nonce().to_le_bytes().as_slice());
|
||||||
|
|
|
@ -1,3 +1,5 @@
|
||||||
|
use serai_client::primitives::Amount;
|
||||||
|
|
||||||
pub(crate) mod output;
|
pub(crate) mod output;
|
||||||
pub(crate) mod transaction;
|
pub(crate) mod transaction;
|
||||||
pub(crate) mod machine;
|
pub(crate) mod machine;
|
||||||
|
@ -10,3 +12,10 @@ pub(crate) const DAI: [u8; 20] =
|
||||||
};
|
};
|
||||||
|
|
||||||
pub(crate) const TOKENS: [[u8; 20]; 1] = [DAI];
|
pub(crate) const TOKENS: [[u8; 20]; 1] = [DAI];
|
||||||
|
|
||||||
|
// 8 decimals, so 1_000_000_00 would be 1 ETH. This is 0.0015 ETH (5 USD if Ether is ~3300 USD).
|
||||||
|
#[allow(clippy::inconsistent_digit_grouping)]
|
||||||
|
pub(crate) const ETHER_DUST: Amount = Amount(1_500_00);
|
||||||
|
// 5 DAI
|
||||||
|
#[allow(clippy::inconsistent_digit_grouping)]
|
||||||
|
pub(crate) const DAI_DUST: Amount = Amount(5_000_000_00);
|
||||||
|
|
|
@ -15,7 +15,7 @@ use serai_client::{
|
||||||
use primitives::{OutputType, ReceivedOutput};
|
use primitives::{OutputType, ReceivedOutput};
|
||||||
use ethereum_router::{Coin as EthereumCoin, InInstruction as EthereumInInstruction};
|
use ethereum_router::{Coin as EthereumCoin, InInstruction as EthereumInInstruction};
|
||||||
|
|
||||||
use crate::DAI;
|
use crate::{DAI, ETHER_DUST};
|
||||||
|
|
||||||
fn coin_to_serai_coin(coin: &EthereumCoin) -> Option<Coin> {
|
fn coin_to_serai_coin(coin: &EthereumCoin) -> Option<Coin> {
|
||||||
match coin {
|
match coin {
|
||||||
|
@ -59,58 +59,122 @@ impl AsMut<[u8]> for OutputId {
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Clone, PartialEq, Eq, Debug)]
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
||||||
pub(crate) struct Output {
|
pub(crate) enum Output {
|
||||||
pub(crate) key: <Secp256k1 as Ciphersuite>::G,
|
Output { key: <Secp256k1 as Ciphersuite>::G, instruction: EthereumInInstruction },
|
||||||
pub(crate) instruction: EthereumInInstruction,
|
Eventuality { key: <Secp256k1 as Ciphersuite>::G, nonce: u64 },
|
||||||
}
|
}
|
||||||
impl ReceivedOutput<<Secp256k1 as Ciphersuite>::G, Address> for Output {
|
impl ReceivedOutput<<Secp256k1 as Ciphersuite>::G, Address> for Output {
|
||||||
type Id = OutputId;
|
type Id = OutputId;
|
||||||
type TransactionId = [u8; 32];
|
type TransactionId = [u8; 32];
|
||||||
|
|
||||||
// We only scan external outputs as we don't have branch/change/forwards
|
|
||||||
fn kind(&self) -> OutputType {
|
fn kind(&self) -> OutputType {
|
||||||
OutputType::External
|
match self {
|
||||||
|
// All outputs received are External
|
||||||
|
Output::Output { .. } => OutputType::External,
|
||||||
|
// Yet upon Eventuality completions, we report a Change output to ensure synchrony per the
|
||||||
|
// scanner's documented bounds
|
||||||
|
Output::Eventuality { .. } => OutputType::Change,
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn id(&self) -> Self::Id {
|
fn id(&self) -> Self::Id {
|
||||||
let mut id = [0; 40];
|
match self {
|
||||||
id[.. 32].copy_from_slice(&self.instruction.id.0);
|
Output::Output { key: _, instruction } => {
|
||||||
id[32 ..].copy_from_slice(&self.instruction.id.1.to_le_bytes());
|
let mut id = [0; 40];
|
||||||
OutputId(id)
|
id[.. 32].copy_from_slice(&instruction.id.0);
|
||||||
|
id[32 ..].copy_from_slice(&instruction.id.1.to_le_bytes());
|
||||||
|
OutputId(id)
|
||||||
|
}
|
||||||
|
// Yet upon Eventuality completions, we report a Change output to ensure synchrony per the
|
||||||
|
// scanner's documented bounds
|
||||||
|
Output::Eventuality { key: _, nonce } => {
|
||||||
|
let mut id = [0; 40];
|
||||||
|
id[.. 8].copy_from_slice(&nonce.to_le_bytes());
|
||||||
|
OutputId(id)
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn transaction_id(&self) -> Self::TransactionId {
|
fn transaction_id(&self) -> Self::TransactionId {
|
||||||
self.instruction.id.0
|
match self {
|
||||||
|
Output::Output { key: _, instruction } => instruction.id.0,
|
||||||
|
Output::Eventuality { key: _, nonce } => {
|
||||||
|
let mut id = [0; 32];
|
||||||
|
id[.. 8].copy_from_slice(&nonce.to_le_bytes());
|
||||||
|
id
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn key(&self) -> <Secp256k1 as Ciphersuite>::G {
|
fn key(&self) -> <Secp256k1 as Ciphersuite>::G {
|
||||||
self.key
|
match self {
|
||||||
|
Output::Output { key, .. } | Output::Eventuality { key, .. } => *key,
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn presumed_origin(&self) -> Option<Address> {
|
fn presumed_origin(&self) -> Option<Address> {
|
||||||
Some(Address::from(self.instruction.from))
|
match self {
|
||||||
|
Output::Output { key: _, instruction } => Some(Address::from(instruction.from)),
|
||||||
|
Output::Eventuality { .. } => None,
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn balance(&self) -> Balance {
|
fn balance(&self) -> Balance {
|
||||||
let coin = coin_to_serai_coin(&self.instruction.coin).unwrap_or_else(|| {
|
match self {
|
||||||
panic!(
|
Output::Output { key: _, instruction } => {
|
||||||
"mapping coin from an EthereumInInstruction with coin {}, which we don't handle.",
|
let coin = coin_to_serai_coin(&instruction.coin).unwrap_or_else(|| {
|
||||||
"this never should have been yielded"
|
panic!(
|
||||||
)
|
"mapping coin from an EthereumInInstruction with coin {}, which we don't handle.",
|
||||||
});
|
"this never should have been yielded"
|
||||||
Balance { coin, amount: amount_to_serai_amount(coin, self.instruction.amount) }
|
)
|
||||||
|
});
|
||||||
|
Balance { coin, amount: amount_to_serai_amount(coin, instruction.amount) }
|
||||||
|
}
|
||||||
|
Output::Eventuality { .. } => Balance { coin: Coin::Ether, amount: ETHER_DUST },
|
||||||
|
}
|
||||||
}
|
}
|
||||||
fn data(&self) -> &[u8] {
|
fn data(&self) -> &[u8] {
|
||||||
&self.instruction.data
|
match self {
|
||||||
|
Output::Output { key: _, instruction } => &instruction.data,
|
||||||
|
Output::Eventuality { .. } => &[],
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||||
writer.write_all(self.key.to_bytes().as_ref())?;
|
match self {
|
||||||
self.instruction.write(writer)
|
Output::Output { key, instruction } => {
|
||||||
|
writer.write_all(&[0])?;
|
||||||
|
writer.write_all(key.to_bytes().as_ref())?;
|
||||||
|
instruction.write(writer)
|
||||||
|
}
|
||||||
|
Output::Eventuality { key, nonce } => {
|
||||||
|
writer.write_all(&[1])?;
|
||||||
|
writer.write_all(key.to_bytes().as_ref())?;
|
||||||
|
writer.write_all(&nonce.to_le_bytes())
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||||
let key = Secp256k1::read_G(reader)?;
|
let mut kind = [0xff];
|
||||||
let instruction = EthereumInInstruction::read(reader)?;
|
reader.read_exact(&mut kind)?;
|
||||||
Ok(Self { key, instruction })
|
if kind[0] >= 2 {
|
||||||
|
Err(io::Error::other("unknown Output type"))?;
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(match kind[0] {
|
||||||
|
0 => {
|
||||||
|
let key = Secp256k1::read_G(reader)?;
|
||||||
|
let instruction = EthereumInInstruction::read(reader)?;
|
||||||
|
Self::Output { key, instruction }
|
||||||
|
}
|
||||||
|
1 => {
|
||||||
|
let key = Secp256k1::read_G(reader)?;
|
||||||
|
let mut nonce = [0; 8];
|
||||||
|
reader.read_exact(&mut nonce)?;
|
||||||
|
let nonce = u64::from_le_bytes(nonce);
|
||||||
|
Self::Eventuality { key, nonce }
|
||||||
|
}
|
||||||
|
_ => unreachable!(),
|
||||||
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -321,7 +321,9 @@ pub trait Scheduler<S: ScannerFeed>: 'static + Send {
|
||||||
///
|
///
|
||||||
/// Any Eventualities returned by this function must include an output-to-Serai (such as a Branch
|
/// Any Eventualities returned by this function must include an output-to-Serai (such as a Branch
|
||||||
/// or Change), unless they descend from a transaction returned by this function which satisfies
|
/// or Change), unless they descend from a transaction returned by this function which satisfies
|
||||||
/// that requirement.
|
/// that requirement. This ensures when we scan outputs from transactions we made, we report the
|
||||||
|
/// block up to Substrate, and obtain synchrony on all prior blocks (allowing us to identify our
|
||||||
|
/// own transactions, which we may be prior unaware of due to a lagging view of Substrate).
|
||||||
///
|
///
|
||||||
/// `active_keys` is the list of active keys, potentially including a key for which we've already
|
/// `active_keys` is the list of active keys, potentially including a key for which we've already
|
||||||
/// called `retire_key` on. If so, its stage will be `Finishing` and no further operations will
|
/// called `retire_key` on. If so, its stage will be `Finishing` and no further operations will
|
||||||
|
|
Loading…
Reference in a new issue