Consolidate concise/efficient and clean

This commit is contained in:
Luke Parker 2022-07-07 07:30:10 -04:00
parent 7d80b6e854
commit 1a2e6dc5cf
13 changed files with 458 additions and 663 deletions

View file

@ -55,6 +55,8 @@ impl<
> Aos<G0, G1, RING_LEN> where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
#[allow(non_snake_case)]
fn nonces<T: Transcript>(mut transcript: T, nonces: (G0, G1)) -> (G0::Scalar, G1::Scalar) {
transcript.domain_separate(b"aos_membership_proof");
transcript.append_message(b"ring_len", &u8::try_from(RING_LEN).unwrap().to_le_bytes());
transcript.append_message(b"nonce_0", nonces.0.to_bytes().as_ref());
transcript.append_message(b"nonce_1", nonces.1.to_bytes().as_ref());
mutual_scalar_from_bytes(transcript.challenge(b"challenge").as_ref())
@ -151,6 +153,7 @@ impl<
debug_assert!((RING_LEN == 2) || (RING_LEN == 4));
debug_assert_eq!(RING_LEN, ring.len());
#[allow(non_snake_case)]
match self.Re_0 {
Re::R(R0_0, R1_0) => {
let mut e = Self::nonces(transcript.clone(), (R0_0, R1_0));
@ -164,6 +167,7 @@ impl<
*ring.last().unwrap(),
e
);
// TODO: Make something else negative to speed up vartime
statements.0.push((-G0::Scalar::one(), R0_0));
statements.1.push((-G1::Scalar::one(), R1_0));
batch.0.queue(&mut *rng, (), statements.0);

View file

@ -3,73 +3,89 @@ use rand_core::{RngCore, CryptoRng};
use transcript::Transcript;
use group::{ff::PrimeFieldBits, prime::PrimeGroup};
use multiexp::BatchVerifier;
use crate::{Generators, cross_group::DLEqError};
use crate::{Generators, cross_group::{DLEqError, aos::{Re, Aos}}};
#[cfg(feature = "serialize")]
use std::io::{Read, Write};
#[cfg(feature = "serialize")]
use crate::cross_group::read_point;
pub trait RingSignature<G0: PrimeGroup, G1: PrimeGroup>: Sized {
type Context;
pub(crate) enum BitSignature {
ConciseLinear,
EfficientLinear
}
const LEN: usize;
impl BitSignature {
pub(crate) const fn to_u8(&self) -> u8 {
match self {
BitSignature::ConciseLinear => 0,
BitSignature::EfficientLinear => 1
}
}
fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: T,
generators: (Generators<G0>, Generators<G1>),
ring: &[(G0, G1)],
actual: usize,
blinding_key: (G0::Scalar, G1::Scalar)
) -> Self;
pub(crate) const fn from(algorithm: u8) -> BitSignature {
match algorithm {
0 => BitSignature::ConciseLinear,
1 => BitSignature::EfficientLinear,
_ => panic!("Unknown algorithm")
}
}
fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
&self,
rng: &mut R,
transcript: T,
generators: (Generators<G0>, Generators<G1>),
context: &mut Self::Context,
ring: &[(G0, G1)]
) -> Result<(), DLEqError>;
pub(crate) const fn bits(&self) -> usize {
match self {
BitSignature::ConciseLinear => 2,
BitSignature::EfficientLinear => 1
}
}
#[cfg(feature = "serialize")]
fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()>;
#[cfg(feature = "serialize")]
fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self>;
pub(crate) const fn ring_len(&self) -> usize {
2_usize.pow(self.bits() as u32)
}
fn aos_form<G0: PrimeGroup, G1: PrimeGroup>(&self) -> Re<G0, G1> {
match self {
BitSignature::ConciseLinear => Re::e_default(),
BitSignature::EfficientLinear => Re::R_default()
}
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub(crate) struct Bits<G0: PrimeGroup, G1: PrimeGroup, RING: RingSignature<G0, G1>> {
pub(crate) struct Bits<
G0: PrimeGroup,
G1: PrimeGroup,
const SIGNATURE: u8,
const RING_LEN: usize
> {
pub(crate) commitments: (G0, G1),
signature: RING
signature: Aos<G0, G1, RING_LEN>
}
impl<G0: PrimeGroup, G1: PrimeGroup, RING: RingSignature<G0, G1>> Bits<G0, G1, RING>
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
impl<
G0: PrimeGroup,
G1: PrimeGroup,
const SIGNATURE: u8,
const RING_LEN: usize
> Bits<G0, G1, SIGNATURE, RING_LEN> where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
fn transcript<T: Transcript>(transcript: &mut T, i: usize, commitments: (G0, G1)) {
if i == 0 {
transcript.domain_separate(b"cross_group_dleq");
}
transcript.append_message(b"bit_group", &u16::try_from(i).unwrap().to_le_bytes());
transcript.domain_separate(b"bits");
transcript.append_message(b"group", &u16::try_from(i).unwrap().to_le_bytes());
transcript.append_message(b"commitment_0", commitments.0.to_bytes().as_ref());
transcript.append_message(b"commitment_1", commitments.1.to_bytes().as_ref());
}
fn ring(pow_2: (G0, G1), commitments: (G0, G1)) -> Vec<(G0, G1)> {
let mut res = vec![(G0::identity(), G1::identity()); RING::LEN];
res[RING::LEN - 1] = commitments;
for i in (0 .. (RING::LEN - 1)).rev() {
res[i] = (res[i + 1].0 - pow_2.0, res[i + 1].1 - pow_2.1);
let mut res = vec![commitments; RING_LEN];
for i in 1 .. RING_LEN {
res[i] = (res[i - 1].0 - pow_2.0, res[i - 1].1 - pow_2.1);
}
res
}
fn shift(pow_2: &mut (G0, G1)) {
pow_2.0 = pow_2.0.double();
pow_2.1 = pow_2.1.double();
if RING::LEN == 4 {
for _ in 0 .. BitSignature::from(SIGNATURE).bits() {
pow_2.0 = pow_2.0.double();
pow_2.1 = pow_2.1.double();
}
@ -84,20 +100,24 @@ impl<G0: PrimeGroup, G1: PrimeGroup, RING: RingSignature<G0, G1>> Bits<G0, G1, R
bits: u8,
blinding_key: (G0::Scalar, G1::Scalar)
) -> Self {
debug_assert!((RING::LEN == 2) || (RING::LEN == 4));
let mut commitments = (
(generators.0.alt * blinding_key.0),
(generators.1.alt * blinding_key.1)
);
commitments.0 += pow_2.0 * G0::Scalar::from(bits.into());
commitments.1 += pow_2.1 * G1::Scalar::from(bits.into());
Self::transcript(transcript, i, commitments);
let ring = Self::ring(*pow_2, commitments);
// Invert the index to get the raw blinding key's position in the ring
let actual = RING::LEN - 1 - usize::from(bits);
let signature = RING::prove(rng, transcript.clone(), generators, &ring, actual, blinding_key);
let signature = Aos::prove(
rng,
transcript.clone(),
generators,
&Self::ring(*pow_2, commitments),
usize::from(bits),
blinding_key,
BitSignature::from(SIGNATURE).aos_form()
);
Self::shift(pow_2);
Bits { commitments, signature }
@ -108,18 +128,17 @@ impl<G0: PrimeGroup, G1: PrimeGroup, RING: RingSignature<G0, G1>> Bits<G0, G1, R
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
context: &mut RING::Context,
batch: &mut (BatchVerifier<(), G0>, BatchVerifier<(), G1>),
i: usize,
pow_2: &mut (G0, G1)
) -> Result<(), DLEqError> {
debug_assert!((RING::LEN == 2) || (RING::LEN == 4));
Self::transcript(transcript, i, self.commitments);
self.signature.verify(
rng,
transcript.clone(),
generators,
context,
batch,
&Self::ring(*pow_2, self.commitments)
)?;
@ -135,7 +154,7 @@ impl<G0: PrimeGroup, G1: PrimeGroup, RING: RingSignature<G0, G1>> Bits<G0, G1, R
}
#[cfg(feature = "serialize")]
pub(crate) fn deserialize<Re: Read>(r: &mut Re) -> std::io::Result<Self> {
Ok(Bits { commitments: (read_point(r)?, read_point(r)?), signature: RING::deserialize(r)? })
pub(crate) fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
Ok(Bits { commitments: (read_point(r)?, read_point(r)?), signature: Aos::deserialize(r)? })
}
}

View file

@ -1,217 +0,0 @@
use rand_core::{RngCore, CryptoRng};
use digest::Digest;
use transcript::Transcript;
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
use crate::{
Generators,
cross_group::{
DLEqError, DLEqProof,
scalar::{scalar_convert, mutual_scalar_from_bytes},
schnorr::SchnorrPoK,
linear::aos::ClassicAos,
bits::Bits
}
};
#[cfg(feature = "serialize")]
use std::io::{Read, Write};
pub type ConciseDLEq<G0, G1> = DLEqProof<
G0,
G1,
ClassicAos<G0, G1, 4>,
ClassicAos<G0, G1, 2>
>;
impl<G0: PrimeGroup, G1: PrimeGroup> ConciseDLEq<G0, G1>
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f: (G0::Scalar, G1::Scalar)
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::initialize_transcript(
transcript,
generators,
((generators.0.primary * f.0), (generators.1.primary * f.1))
);
let poks = (
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
);
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
let mut blinding_key = |rng: &mut R, last| {
let blinding_key = (
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, last),
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, last)
);
if last {
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
}
blinding_key
};
let mut pow_2 = (generators.0.primary, generators.1.primary);
let raw_bits = f.0.to_le_bits();
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
let mut bits = Vec::with_capacity(capacity);
let mut these_bits: u8 = 0;
for (i, bit) in raw_bits.iter().enumerate() {
if i > ((capacity / 2) * 2) {
break;
}
let bit = *bit as u8;
debug_assert_eq!(bit | 1, 1);
if (i % 2) == 0 {
these_bits = bit;
continue;
} else {
these_bits += bit << 1;
}
let last = i == (capacity - 1);
let blinding_key = blinding_key(&mut *rng, last);
bits.push(
Bits::prove(&mut *rng, transcript, generators, i / 2, &mut pow_2, these_bits, blinding_key)
);
}
let mut remainder = None;
if (capacity % 2) == 1 {
let blinding_key = blinding_key(&mut *rng, true);
remainder = Some(
Bits::prove(
&mut *rng,
transcript,
generators,
capacity / 2,
&mut pow_2,
these_bits,
blinding_key
)
);
}
let proof = DLEqProof { bits, remainder, poks };
debug_assert_eq!(
proof.reconstruct_keys(),
(generators.0.primary * f.0, generators.1.primary * f.1)
);
(proof, f)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
/// the output of the passed in Digest. Given the non-standard requirements to achieve
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
/// to safely and securely generate a Scalar, without risk of failure, nor bias
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
/// the relationship between keys would allow breaking all swaps after just one
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
digest: D
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::prove_internal(
rng,
transcript,
generators,
mutual_scalar_from_bytes(digest.finalize().as_ref())
)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
/// scalars until they're safely usable, as needed
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f0: G0::Scalar
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
}
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
pub fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
&self,
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>)
) -> Result<(G0, G1), DLEqError> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
if (self.bits.len() != (capacity / 2).try_into().unwrap()) || (
// These shouldn't be possible, as deserialize ensures this is present for fields with this
// characteristic, and proofs locally generated will have it. Regardless, best to ensure
(self.remainder.is_none() && ((capacity % 2) == 1)) ||
(self.remainder.is_some() && ((capacity % 2) == 0))
) {
return Err(DLEqError::InvalidProofLength);
}
let keys = self.reconstruct_keys();
Self::initialize_transcript(transcript, generators, keys);
if !(
self.poks.0.verify(transcript, generators.0.primary, keys.0) &&
self.poks.1.verify(transcript, generators.1.primary, keys.1)
) {
Err(DLEqError::InvalidProofOfKnowledge)?;
}
let mut pow_2 = (generators.0.primary, generators.1.primary);
for (i, bits) in self.bits.iter().enumerate() {
bits.verify(&mut *rng, transcript, generators, &mut (), i, &mut pow_2)?;
}
if let Some(bit) = &self.remainder {
bit.verify(&mut *rng, transcript, generators, &mut (), self.bits.len(), &mut pow_2)?;
}
Ok(keys)
}
#[cfg(feature = "serialize")]
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
for bit in &self.bits {
bit.serialize(w)?;
}
if let Some(bit) = &self.remainder {
bit.serialize(w)?;
}
self.poks.0.serialize(w)?;
self.poks.1.serialize(w)
}
#[cfg(feature = "serialize")]
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
let mut bits = Vec::with_capacity(capacity.try_into().unwrap());
for _ in 0 .. (capacity / 2) {
bits.push(Bits::deserialize(r)?);
}
let mut remainder = None;
if (capacity % 2) == 1 {
remainder = Some(Bits::deserialize(r)?);
}
Ok(
DLEqProof {
bits,
remainder,
poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?)
}
)
}
}

View file

@ -1,182 +0,0 @@
use rand_core::{RngCore, CryptoRng};
use digest::Digest;
use transcript::Transcript;
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
use multiexp::BatchVerifier;
use crate::{
Generators,
cross_group::{
DLEqError, DLEqProof,
scalar::{scalar_convert, mutual_scalar_from_bytes},
schnorr::SchnorrPoK,
linear::aos::MultiexpAos,
bits::Bits
}
};
#[cfg(feature = "serialize")]
use std::io::{Read, Write};
pub type EfficientDLEq<G0, G1> = DLEqProof<G0, G1, MultiexpAos<G0, G1>, MultiexpAos<G0, G1>>;
impl<G0: PrimeGroup, G1: PrimeGroup> EfficientDLEq<G0, G1>
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f: (G0::Scalar, G1::Scalar)
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::initialize_transcript(
transcript,
generators,
((generators.0.primary * f.0), (generators.1.primary * f.1))
);
let poks = (
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
);
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
let mut blinding_key = |rng: &mut R, last| {
let blinding_key = (
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, last),
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, last)
);
if last {
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
}
blinding_key
};
let mut pow_2 = (generators.0.primary, generators.1.primary);
let raw_bits = f.0.to_le_bits();
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
let mut bits = Vec::with_capacity(capacity);
for (i, bit) in raw_bits.iter().enumerate() {
let bit = *bit as u8;
debug_assert_eq!(bit | 1, 1);
let last = i == (capacity - 1);
let blinding_key = blinding_key(&mut *rng, last);
bits.push(
Bits::prove(&mut *rng, transcript, generators, i, &mut pow_2, bit, blinding_key)
);
if last {
break;
}
}
let proof = DLEqProof { bits, remainder: None, poks };
debug_assert_eq!(
proof.reconstruct_keys(),
(generators.0.primary * f.0, generators.1.primary * f.1)
);
(proof, f)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
/// the output of the passed in Digest. Given the non-standard requirements to achieve
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
/// to safely and securely generate a Scalar, without risk of failure, nor bias
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
/// the relationship between keys would allow breaking all swaps after just one
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
digest: D
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::prove_internal(
rng,
transcript,
generators,
mutual_scalar_from_bytes(digest.finalize().as_ref())
)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
/// scalars until they're safely usable, as needed
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f0: G0::Scalar
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
}
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
pub fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
&self,
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>)
) -> Result<(G0, G1), DLEqError> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
// The latter case shouldn't be possible yet would explicitly be invalid
if (self.bits.len() != capacity.try_into().unwrap()) || self.remainder.is_some() {
return Err(DLEqError::InvalidProofLength);
}
let keys = self.reconstruct_keys();
Self::initialize_transcript(transcript, generators, keys);
// TODO: Batch
if !(
self.poks.0.verify(transcript, generators.0.primary, keys.0) &&
self.poks.1.verify(transcript, generators.1.primary, keys.1)
) {
Err(DLEqError::InvalidProofOfKnowledge)?;
}
let mut batch = (
BatchVerifier::new(self.bits.len() * 3),
BatchVerifier::new(self.bits.len() * 3)
);
let mut pow_2 = (generators.0.primary, generators.1.primary);
for (i, bits) in self.bits.iter().enumerate() {
bits.verify(&mut *rng, transcript, generators, &mut batch, i, &mut pow_2)?;
}
if (!batch.0.verify_vartime()) || (!batch.1.verify_vartime()) {
Err(DLEqError::InvalidProof)?;
}
Ok(keys)
}
#[cfg(feature = "serialize")]
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
for bit in &self.bits {
bit.serialize(w)?;
}
self.poks.0.serialize(w)?;
self.poks.1.serialize(w)
}
#[cfg(feature = "serialize")]
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
let mut bits = Vec::with_capacity(capacity.try_into().unwrap());
for _ in 0 .. capacity {
bits.push(Bits::deserialize(r)?);
}
Ok(
DLEqProof {
bits,
remainder: None,
poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?)
}
)
}
}

View file

@ -1,7 +0,0 @@
pub(crate) mod aos;
mod concise;
pub use concise::ConciseDLEq;
mod efficient;
pub use efficient::EfficientDLEq;

View file

@ -1,24 +1,28 @@
use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use digest::Digest;
use transcript::Transcript;
use group::{ff::{PrimeField, PrimeFieldBits}, prime::PrimeGroup};
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
use multiexp::BatchVerifier;
use crate::Generators;
pub mod scalar;
use scalar::{scalar_convert, mutual_scalar_from_bytes};
pub(crate) mod schnorr;
use schnorr::SchnorrPoK;
mod bits;
use bits::{RingSignature, Bits};
pub(crate) mod aos;
pub mod linear;
mod bits;
use bits::{BitSignature, Bits};
#[cfg(feature = "serialize")]
use std::io::Read;
use std::io::{Read, Write};
#[cfg(feature = "serialize")]
pub(crate) fn read_point<R: Read, G: PrimeGroup>(r: &mut R) -> std::io::Result<G> {
@ -49,25 +53,48 @@ pub enum DLEqError {
pub struct DLEqProof<
G0: PrimeGroup,
G1: PrimeGroup,
RING: RingSignature<G0, G1>,
REM: RingSignature<G0, G1>
const SIGNATURE: u8,
const RING_LEN: usize,
const REMAINDER_RING_LEN: usize
> where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
bits: Vec<Bits<G0, G1, RING>>,
remainder: Option<Bits<G0, G1, REM>>,
bits: Vec<Bits<G0, G1, SIGNATURE, RING_LEN>>,
remainder: Option<Bits<G0, G1, SIGNATURE, REMAINDER_RING_LEN>>,
poks: (SchnorrPoK<G0>, SchnorrPoK<G1>)
}
pub type ConciseLinearDLEq<G0, G1> = DLEqProof<
G0,
G1,
{ BitSignature::ConciseLinear.to_u8() },
{ BitSignature::ConciseLinear.ring_len() },
// There may not be a remainder, yet if there is, it'll be just one bit
// A ring for one bit has a RING_LEN of 2
2
>;
pub type EfficientLinearDLEq<G0, G1> = DLEqProof<
G0,
G1,
{ BitSignature::EfficientLinear.to_u8() },
{ BitSignature::EfficientLinear.ring_len() },
0
>;
impl<
G0: PrimeGroup,
G1: PrimeGroup,
RING: RingSignature<G0, G1>,
REM: RingSignature<G0, G1>
> DLEqProof<G0, G1, RING, REM> where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
pub(crate) fn initialize_transcript<T: Transcript>(
const SIGNATURE: u8,
const RING_LEN: usize,
const REMAINDER_RING_LEN: usize
> DLEqProof<G0, G1, SIGNATURE, RING_LEN, REMAINDER_RING_LEN> where
G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
pub(crate) fn transcript<T: Transcript>(
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
keys: (G0, G1)
) {
transcript.domain_separate(b"cross_group_dleq");
generators.0.transcript(transcript);
generators.1.transcript(transcript);
transcript.domain_separate(b"points");
@ -102,4 +129,214 @@ impl<
res
}
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f: (G0::Scalar, G1::Scalar)
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::transcript(
transcript,
generators,
((generators.0.primary * f.0), (generators.1.primary * f.1))
);
let poks = (
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
);
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
let mut blinding_key = |rng: &mut R, last| {
let blinding_key = (
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, last),
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, last)
);
if last {
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
}
blinding_key
};
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
let bits_per_group = BitSignature::from(SIGNATURE).bits();
let mut pow_2 = (generators.0.primary, generators.1.primary);
let raw_bits = f.0.to_le_bits();
let mut bits = Vec::with_capacity(capacity);
let mut these_bits: u8 = 0;
for (i, bit) in raw_bits.iter().enumerate() {
if i == capacity {
break;
}
let bit = *bit as u8;
debug_assert_eq!(bit | 1, 1);
// Accumulate this bit
these_bits |= bit << (i % bits_per_group);
if (i % bits_per_group) == (bits_per_group - 1) {
let last = i == (capacity - 1);
let blinding_key = blinding_key(&mut *rng, last);
bits.push(
Bits::prove(
&mut *rng,
transcript,
generators,
i / bits_per_group,
&mut pow_2,
these_bits,
blinding_key
)
);
these_bits = 0;
}
}
debug_assert_eq!(bits.len(), capacity / bits_per_group);
let mut remainder = None;
if capacity != ((capacity / bits_per_group) * bits_per_group) {
let blinding_key = blinding_key(&mut *rng, true);
remainder = Some(
Bits::prove(
&mut *rng,
transcript,
generators,
capacity / bits_per_group,
&mut pow_2,
these_bits,
blinding_key
)
);
}
let proof = DLEqProof { bits, remainder, poks };
debug_assert_eq!(
proof.reconstruct_keys(),
(generators.0.primary * f.0, generators.1.primary * f.1)
);
(proof, f)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
/// the output of the passed in Digest. Given the non-standard requirements to achieve
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
/// to safely and securely generate a Scalar, without risk of failure, nor bias
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
/// the relationship between keys would allow breaking all swaps after just one
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
digest: D
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::prove_internal(
rng,
transcript,
generators,
mutual_scalar_from_bytes(digest.finalize().as_ref())
)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
/// scalars until they're safely usable, as needed
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f0: G0::Scalar
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
}
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
pub fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
&self,
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>)
) -> Result<(G0, G1), DLEqError> {
let capacity = usize::try_from(
G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)
).unwrap();
let bits_per_group = BitSignature::from(SIGNATURE).bits();
let has_remainder = (capacity % bits_per_group) != 0;
// These shouldn't be possible, as locally created and deserialized proofs should be properly
// formed in these regards, yet it doesn't hurt to check and would be problematic if true
if (self.bits.len() != (capacity / bits_per_group)) || (
(self.remainder.is_none() && has_remainder) || (self.remainder.is_some() && !has_remainder)
) {
return Err(DLEqError::InvalidProofLength);
}
let keys = self.reconstruct_keys();
Self::transcript(transcript, generators, keys);
let batch_capacity = match BitSignature::from(SIGNATURE) {
BitSignature::ConciseLinear => 3,
BitSignature::EfficientLinear => (self.bits.len() + 1) * 3
};
let mut batch = (BatchVerifier::new(batch_capacity), BatchVerifier::new(batch_capacity));
self.poks.0.verify(&mut *rng, transcript, generators.0.primary, keys.0, &mut batch.0);
self.poks.1.verify(&mut *rng, transcript, generators.1.primary, keys.1, &mut batch.1);
let mut pow_2 = (generators.0.primary, generators.1.primary);
for (i, bits) in self.bits.iter().enumerate() {
bits.verify(&mut *rng, transcript, generators, &mut batch, i, &mut pow_2)?;
}
if let Some(bit) = &self.remainder {
bit.verify(&mut *rng, transcript, generators, &mut batch, self.bits.len(), &mut pow_2)?;
}
if (!batch.0.verify_vartime()) || (!batch.1.verify_vartime()) {
Err(DLEqError::InvalidProof)?;
}
Ok(keys)
}
#[cfg(feature = "serialize")]
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
for bit in &self.bits {
bit.serialize(w)?;
}
if let Some(bit) = &self.remainder {
bit.serialize(w)?;
}
self.poks.0.serialize(w)?;
self.poks.1.serialize(w)
}
#[cfg(feature = "serialize")]
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
let capacity = usize::try_from(
G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)
).unwrap();
let bits_per_group = BitSignature::from(SIGNATURE).bits();
let mut bits = Vec::with_capacity(capacity / bits_per_group);
for _ in 0 .. (capacity / bits_per_group) {
bits.push(Bits::deserialize(r)?);
}
let mut remainder = None;
if (capacity % bits_per_group) != 0 {
remainder = Some(Bits::deserialize(r)?);
}
Ok(
DLEqProof {
bits,
remainder,
poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?)
}
)
}
}

View file

@ -2,7 +2,8 @@ use rand_core::{RngCore, CryptoRng};
use transcript::Transcript;
use group::{ff::Field, prime::PrimeGroup};
use group::{ff::{Field, PrimeFieldBits}, prime::PrimeGroup};
use multiexp::BatchVerifier;
use crate::challenge;
@ -20,7 +21,7 @@ pub(crate) struct SchnorrPoK<G: PrimeGroup> {
s: G::Scalar
}
impl<G: PrimeGroup> SchnorrPoK<G> {
impl<G: PrimeGroup> SchnorrPoK<G> where G::Scalar: PrimeFieldBits {
// Not hram due to the lack of m
#[allow(non_snake_case)]
fn hra<T: Transcript>(transcript: &mut T, generator: G, R: G, A: G) -> G::Scalar {
@ -46,16 +47,23 @@ impl<G: PrimeGroup> SchnorrPoK<G> {
}
}
#[must_use]
pub(crate) fn verify<T: Transcript>(
pub(crate) fn verify<R: RngCore + CryptoRng, T: Transcript>(
&self,
rng: &mut R,
transcript: &mut T,
generator: G,
public_key: G
) -> bool {
(generator * self.s) == (
self.R + (public_key * Self::hra(transcript, generator, self.R, public_key))
)
public_key: G,
batch: &mut BatchVerifier<(), G>
) {
batch.queue(
rng,
(),
[
(-self.s, generator),
(G::Scalar::one(), self.R),
(Self::hra(transcript, generator, self.R, public_key), public_key)
]
);
}
#[cfg(feature = "serialize")]

View file

@ -5,7 +5,7 @@ use group::{ff::Field, Group};
use multiexp::BatchVerifier;
use crate::{
cross_group::linear::aos::{Re, Aos},
cross_group::aos::{Re, Aos},
tests::cross_group::{G0, G1, transcript, generators}
};
@ -21,6 +21,8 @@ fn test_aos<const RING_LEN: usize>(default: Re<G0, G1>) {
let generators = generators();
let mut ring_keys = [(<G0 as Group>::Scalar::zero(), <G1 as Group>::Scalar::zero()); RING_LEN];
// Side-effect of G0 being a type-alias with identity() deprecated
#[allow(deprecated)]
let mut ring = [(G0::identity(), G1::identity()); RING_LEN];
for i in 0 .. RING_LEN {
ring_keys[i] = (
@ -58,6 +60,7 @@ fn test_aos_e() {
test_aos::<4>(Re::e_default());
}
#[allow(non_snake_case)]
#[test]
fn test_aos_R() {
// Batch verification appreciates the longer vectors, which means not batching bits

View file

@ -1,98 +0,0 @@
use rand_core::{RngCore, OsRng};
use ff::{Field, PrimeField};
use k256::Scalar;
#[cfg(feature = "serialize")]
use k256::ProjectivePoint;
#[cfg(feature = "serialize")]
use dalek_ff_group::EdwardsPoint;
use blake2::{Digest, Blake2b512};
use crate::{
cross_group::{scalar::mutual_scalar_from_bytes, linear::ConciseDLEq},
tests::cross_group::{transcript, generators}
};
#[test]
fn test_linear_concise_cross_group_dleq() {
let generators = generators();
for i in 0 .. 1 {
let (proof, keys) = if i == 0 {
let mut seed = [0; 32];
OsRng.fill_bytes(&mut seed);
ConciseDLEq::prove(
&mut OsRng,
&mut transcript(),
generators,
Blake2b512::new().chain_update(seed)
)
} else {
let mut key;
let mut res;
while {
key = Scalar::random(&mut OsRng);
res = ConciseDLEq::prove_without_bias(
&mut OsRng,
&mut transcript(),
generators,
key
);
res.is_none()
} {}
let res = res.unwrap();
assert_eq!(key, res.1.0);
res
};
let public_keys = proof.verify(&mut OsRng, &mut transcript(), generators).unwrap();
assert_eq!(generators.0.primary * keys.0, public_keys.0);
assert_eq!(generators.1.primary * keys.1, public_keys.1);
#[cfg(feature = "serialize")]
{
let mut buf = vec![];
proof.serialize(&mut buf).unwrap();
let deserialized = ConciseDLEq::<ProjectivePoint, EdwardsPoint>::deserialize(
&mut std::io::Cursor::new(&buf)
).unwrap();
assert_eq!(proof, deserialized);
deserialized.verify(&mut OsRng, &mut transcript(), generators).unwrap();
}
}
}
#[test]
fn test_remainder() {
// Uses Secp256k1 for both to achieve an odd capacity of 255
assert_eq!(Scalar::CAPACITY, 255);
let generators = (generators().0, generators().0);
let keys = mutual_scalar_from_bytes(&[0xFF; 32]);
assert_eq!(keys.0, keys.1);
let (proof, res) = ConciseDLEq::prove_without_bias(
&mut OsRng,
&mut transcript(),
generators,
keys.0
).unwrap();
assert_eq!(keys, res);
let public_keys = proof.verify(&mut OsRng, &mut transcript(), generators).unwrap();
assert_eq!(generators.0.primary * keys.0, public_keys.0);
assert_eq!(generators.1.primary * keys.1, public_keys.1);
#[cfg(feature = "serialize")]
{
let mut buf = vec![];
proof.serialize(&mut buf).unwrap();
let deserialized = ConciseDLEq::<ProjectivePoint, ProjectivePoint>::deserialize(
&mut std::io::Cursor::new(&buf)
).unwrap();
assert_eq!(proof, deserialized);
deserialized.verify(&mut OsRng, &mut transcript(), generators).unwrap();
}
}

View file

@ -1,66 +0,0 @@
use rand_core::{RngCore, OsRng};
use ff::Field;
use k256::Scalar;
#[cfg(feature = "serialize")]
use k256::ProjectivePoint;
#[cfg(feature = "serialize")]
use dalek_ff_group::EdwardsPoint;
use blake2::{Digest, Blake2b512};
use crate::{
cross_group::linear::EfficientDLEq,
tests::cross_group::{transcript, generators}
};
#[test]
fn test_linear_efficient_cross_group_dleq() {
let generators = generators();
for i in 0 .. 1 {
let (proof, keys) = if i == 0 {
let mut seed = [0; 32];
OsRng.fill_bytes(&mut seed);
EfficientDLEq::prove(
&mut OsRng,
&mut transcript(),
generators,
Blake2b512::new().chain_update(seed)
)
} else {
let mut key;
let mut res;
while {
key = Scalar::random(&mut OsRng);
res = EfficientDLEq::prove_without_bias(
&mut OsRng,
&mut transcript(),
generators,
key
);
res.is_none()
} {}
let res = res.unwrap();
assert_eq!(key, res.1.0);
res
};
let public_keys = proof.verify(&mut OsRng, &mut transcript(), generators).unwrap();
assert_eq!(generators.0.primary * keys.0, public_keys.0);
assert_eq!(generators.1.primary * keys.1, public_keys.1);
#[cfg(feature = "serialize")]
{
let mut buf = vec![];
proof.serialize(&mut buf).unwrap();
let deserialized = EfficientDLEq::<ProjectivePoint, EdwardsPoint>::deserialize(
&mut std::io::Cursor::new(&buf)
).unwrap();
assert_eq!(proof, deserialized);
deserialized.verify(&mut OsRng, &mut transcript(), generators).unwrap();
}
}
}

View file

@ -1,2 +0,0 @@
mod concise;
mod efficient;

View file

@ -1,26 +1,33 @@
mod scalar;
mod schnorr;
use hex_literal::hex;
use rand_core::OsRng;
use rand_core::{RngCore, OsRng};
use ff::{Field, PrimeField};
use group::{Group, GroupEncoding};
use blake2::{Digest, Blake2b512};
use k256::{Scalar, ProjectivePoint};
use dalek_ff_group::{self as dfg, EdwardsPoint, CompressedEdwardsY};
use transcript::RecommendedTranscript;
use crate::{Generators, cross_group::linear::EfficientDLEq};
use crate::{
Generators,
cross_group::{scalar::mutual_scalar_from_bytes, EfficientLinearDLEq, ConciseLinearDLEq}
};
mod linear;
mod scalar;
mod schnorr;
mod aos;
type G0 = ProjectivePoint;
type G1 = EdwardsPoint;
pub(crate) fn transcript() -> RecommendedTranscript {
RecommendedTranscript::new(b"Cross-Group DLEq Proof Test")
}
pub(crate) fn generators() -> (Generators<ProjectivePoint>, Generators<EdwardsPoint>) {
pub(crate) fn generators() -> (Generators<G0>, Generators<G1>) {
(
Generators::new(
ProjectivePoint::GENERATOR,
@ -38,6 +45,66 @@ pub(crate) fn generators() -> (Generators<ProjectivePoint>, Generators<EdwardsPo
)
}
macro_rules! verify_and_deserialize {
($type: ident, $proof: ident, $generators: ident, $keys: ident) => {
let public_keys = $proof.verify(&mut OsRng, &mut transcript(), $generators).unwrap();
assert_eq!($generators.0.primary * $keys.0, public_keys.0);
assert_eq!($generators.1.primary * $keys.1, public_keys.1);
#[cfg(feature = "serialize")]
{
let mut buf = vec![];
$proof.serialize(&mut buf).unwrap();
let deserialized = $type::<G0, G1>::deserialize(&mut std::io::Cursor::new(&buf)).unwrap();
assert_eq!(proof, deserialized);
}
}
}
macro_rules! test_dleq {
($name: ident, $type: ident) => {
#[test]
fn $name() {
let generators = generators();
for i in 0 .. 1 {
let (proof, keys) = if i == 0 {
let mut seed = [0; 32];
OsRng.fill_bytes(&mut seed);
$type::prove(
&mut OsRng,
&mut transcript(),
generators,
Blake2b512::new().chain_update(seed)
)
} else {
let mut key;
let mut res;
while {
key = Scalar::random(&mut OsRng);
res = $type::prove_without_bias(
&mut OsRng,
&mut transcript(),
generators,
key
);
res.is_none()
} {}
let res = res.unwrap();
assert_eq!(key, res.1.0);
res
};
verify_and_deserialize!($type, proof, generators, keys);
}
}
}
}
test_dleq!(test_efficient_linear_dleq, EfficientLinearDLEq);
test_dleq!(test_concise_linear_dleq, ConciseLinearDLEq);
#[test]
fn test_rejection_sampling() {
let mut pow_2 = Scalar::one();
@ -46,7 +113,8 @@ fn test_rejection_sampling() {
}
assert!(
EfficientDLEq::prove_without_bias(
// Either would work
EfficientLinearDLEq::prove_without_bias(
&mut OsRng,
&mut RecommendedTranscript::new(b""),
generators(),
@ -54,3 +122,24 @@ fn test_rejection_sampling() {
).is_none()
);
}
#[test]
fn test_remainder() {
// Uses Secp256k1 for both to achieve an odd capacity of 255
assert_eq!(Scalar::CAPACITY, 255);
let generators = (generators().0, generators().0);
// This will ignore any unused bits, ensuring every remaining one is set
let keys = mutual_scalar_from_bytes(&[0xFF; 32]);
assert_eq!(keys.0 + Scalar::one(), Scalar::from(2u64).pow_vartime(&[255]));
assert_eq!(keys.0, keys.1);
let (proof, res) = ConciseLinearDLEq::prove_without_bias(
&mut OsRng,
&mut transcript(),
generators,
keys.0
).unwrap();
assert_eq!(keys, res);
verify_and_deserialize!(ConciseLinearDLEq, proof, generators, keys);
}

View file

@ -1,23 +1,30 @@
use rand_core::OsRng;
use group::{ff::Field, prime::PrimeGroup};
use group::{ff::{Field, PrimeFieldBits}, prime::PrimeGroup};
use multiexp::BatchVerifier;
use transcript::RecommendedTranscript;
use crate::cross_group::schnorr::SchnorrPoK;
fn test_schnorr<G: PrimeGroup>() {
fn test_schnorr<G: PrimeGroup>() where G::Scalar: PrimeFieldBits {
let private = G::Scalar::random(&mut OsRng);
let transcript = RecommendedTranscript::new(b"Schnorr Test");
assert!(
SchnorrPoK::prove(
&mut OsRng,
&mut transcript.clone(),
G::generator(),
private
).verify(&mut transcript.clone(), G::generator(), G::generator() * private)
let mut batch = BatchVerifier::new(3);
SchnorrPoK::prove(
&mut OsRng,
&mut transcript.clone(),
G::generator(),
private
).verify(
&mut OsRng,
&mut transcript.clone(),
G::generator(),
G::generator() * private,
&mut batch
);
assert!(batch.verify_vartime());
}
#[test]