Implement Tributary syncing

Also adds a forwards-lookup to the Tributary blockchain.
This commit is contained in:
Luke Parker 2023-04-24 00:53:15 -04:00
parent 215155f84b
commit 14388e746c
No known key found for this signature in database
6 changed files with 119 additions and 55 deletions

View file

@ -3,6 +3,7 @@
#![allow(unreachable_code)]
#![allow(clippy::diverging_sub_expression)]
use core::ops::Deref;
use std::{
sync::Arc,
time::{SystemTime, Duration},
@ -18,7 +19,7 @@ use serai_client::Serai;
use tokio::{sync::RwLock, time::sleep};
use ::tributary::Tributary;
use ::tributary::{ReadWrite, Block, Tributary};
mod tributary;
use crate::tributary::{TributarySpec, Transaction};
@ -192,11 +193,12 @@ pub async fn heartbeat_tributaries<D: Db, P: P2p>(
#[allow(clippy::type_complexity)]
pub async fn handle_p2p<D: Db, P: P2p>(
our_key: <Ristretto as Ciphersuite>::G,
p2p: P,
tributaries: Arc<RwLock<HashMap<[u8; 32], ActiveTributary<D, P>>>>,
) {
loop {
let msg = p2p.receive().await;
let mut msg = p2p.receive().await;
match msg.kind {
P2pMessageKind::Tributary(genesis) => {
let tributaries_read = tributaries.read().await;
@ -213,8 +215,74 @@ pub async fn handle_p2p<D: Db, P: P2p>(
}
}
// TODO: Respond with the missing block, if there are any
P2pMessageKind::Heartbeat(genesis) => todo!(),
P2pMessageKind::Heartbeat(genesis) => {
let tributaries_read = tributaries.read().await;
let Some(tributary) = tributaries_read.get(&genesis) else {
log::debug!("received hearttbeat message for unknown network");
continue;
};
if msg.msg.len() != 32 {
log::error!("validator sent invalid heartbeat");
continue;
}
let tributary_read = tributary.tributary.read().await;
// Have sqrt(n) nodes reply with the blocks
let mut responders = (tributary.spec.n() as f32).sqrt().floor() as u64;
// Try to have at least 3 responders
if responders < 3 {
responders = tributary.spec.n().min(3).into();
}
// Only respond to this if randomly chosen
let entropy = u64::from_le_bytes(tributary_read.tip().await[.. 8].try_into().unwrap());
// If n = 10, responders = 3, we want start to be 0 ..= 7 (so the highest is 7, 8, 9)
// entropy % (10 + 1) - 3 = entropy % 8 = 0 ..= 7
let start =
usize::try_from(entropy % (u64::from(tributary.spec.n() + 1) - responders)).unwrap();
let mut selected = false;
for validator in
&tributary.spec.validators()[start .. (start + usize::try_from(responders).unwrap())]
{
if our_key == validator.0 {
selected = true;
break;
}
}
if !selected {
continue;
}
let mut latest = msg.msg.try_into().unwrap();
// TODO: All of these calls don't *actually* need a read lock, just access to a DB handle
// We can reduce lock contention accordingly
while let Some(next) = tributary_read.block_after(&latest) {
let mut res = tributary_read.block(&next).unwrap().serialize();
res.extend(tributary_read.commit(&next).unwrap());
p2p.send(msg.sender, P2pMessageKind::Block(tributary.spec.genesis()), res).await;
latest = next;
}
}
P2pMessageKind::Block(genesis) => {
let mut msg_ref: &[u8] = msg.msg.as_ref();
let Ok(block) = Block::<Transaction>::read(&mut msg_ref) else {
log::error!("received block message with an invalidly serialized block");
continue;
};
// Get just the commit
msg.msg.drain((msg.msg.len() - msg_ref.len()) ..);
let tributaries = tributaries.read().await;
let Some(tributary) = tributaries.get(&genesis) else {
log::debug!("received block message for unknown network");
continue;
};
tributary.tributary.write().await.sync_block(block, msg.msg).await;
}
}
}
}
@ -257,7 +325,7 @@ pub async fn run<D: Db, Pro: Processor, P: P2p>(
// Handle P2P messages
// TODO: We also have to broadcast blocks once they're added
tokio::spawn(handle_p2p(p2p, tributaries));
tokio::spawn(handle_p2p(Ristretto::generator() * key.deref(), p2p, tributaries));
loop {
// Handle all messages from processors

View file

@ -11,6 +11,7 @@ pub use tributary::P2p as TributaryP2p;
pub enum P2pMessageKind {
Tributary([u8; 32]),
Heartbeat([u8; 32]),
Block([u8; 32]),
}
impl P2pMessageKind {
@ -26,6 +27,11 @@ impl P2pMessageKind {
res.extend(genesis);
res
}
P2pMessageKind::Block(genesis) => {
let mut res = vec![2];
res.extend(genesis);
res
}
}
}
@ -43,6 +49,11 @@ impl P2pMessageKind {
reader.read_exact(&mut genesis).ok()?;
P2pMessageKind::Heartbeat(genesis)
}),
2 => Some({
let mut genesis = [0; 32];
reader.read_exact(&mut genesis).ok()?;
P2pMessageKind::Block(genesis)
}),
_ => None,
}
}
@ -57,7 +68,7 @@ pub struct Message<P: P2p> {
#[async_trait]
pub trait P2p: Send + Sync + Clone + Debug + TributaryP2p {
type Id: Send + Sync + Clone + Debug;
type Id: Send + Sync + Clone + Copy + Debug;
async fn send_raw(&self, to: Self::Id, msg: Vec<u8>);
async fn broadcast_raw(&self, msg: Vec<u8>);

View file

@ -1,5 +1,5 @@
use core::ops::Deref;
use std::collections::{VecDeque, HashMap};
use std::collections::HashMap;
use zeroize::Zeroizing;
@ -297,43 +297,11 @@ pub async fn handle_new_blocks<D: Db, Pro: Processor, P: P2p>(
spec: &TributarySpec,
tributary: &Tributary<D, Transaction, P>,
) {
let last_block = db.last_block(tributary.genesis());
// Check if there's been a new Tributary block
let latest = tributary.tip().await;
if latest == last_block {
return;
}
let mut blocks = VecDeque::new();
// This is a new block, as per the prior if check
blocks.push_back(tributary.block(&latest).unwrap());
let mut block = None;
while {
let parent = blocks.back().unwrap().parent();
// If the parent is the genesis, we've reached the end
if parent == tributary.genesis() {
false
} else {
// Get this block
block = Some(tributary.block(&parent).unwrap());
// If it's the last block we've scanned, it's the end. Else, push it
block.as_ref().unwrap().hash() != last_block
}
} {
blocks.push_back(block.take().unwrap());
// Prevent this from loading the entire chain into RAM by setting a limit of 1000 blocks at a
// time (roughly 350 MB under the current block size limit)
if blocks.len() > 1000 {
blocks.pop_front();
}
}
while let Some(block) = blocks.pop_back() {
let hash = block.hash();
let mut last_block = db.last_block(tributary.genesis());
while let Some(next) = tributary.block_after(&last_block) {
let block = tributary.block(&next).unwrap();
handle_block(db, key, processor, spec, tributary, block).await;
db.set_last_block(tributary.genesis(), hash);
last_block = next;
db.set_last_block(tributary.genesis(), next);
}
}

View file

@ -37,6 +37,9 @@ impl<D: Db, T: Transaction> Blockchain<D, T> {
fn commit_key(hash: &[u8; 32]) -> Vec<u8> {
D::key(b"tributary_blockchain", b"commit", hash)
}
fn block_after_key(hash: &[u8; 32]) -> Vec<u8> {
D::key(b"tributary_blockchain", b"block_after", hash)
}
fn next_nonce_key(&self, signer: &<Ristretto as Ciphersuite>::G) -> Vec<u8> {
D::key(
b"tributary_blockchain",
@ -105,6 +108,10 @@ impl<D: Db, T: Transaction> Blockchain<D, T> {
Self::commit_from_db(self.db.as_ref().unwrap(), block)
}
pub(crate) fn block_after(db: &D, block: &[u8; 32]) -> Option<[u8; 32]> {
db.get(Self::block_after_key(block)).map(|bytes| bytes.try_into().unwrap())
}
pub(crate) fn add_transaction(&mut self, internal: bool, tx: T) -> bool {
self.mempool.add(&self.next_nonces, internal, tx)
}
@ -158,6 +165,8 @@ impl<D: Db, T: Transaction> Blockchain<D, T> {
txn.put(Self::block_key(&self.tip), block.serialize());
txn.put(Self::commit_key(&self.tip), commit);
txn.put(Self::block_after_key(&block.parent()), block.hash());
for tx in &block.transactions {
match tx.kind() {
TransactionKind::Provided(order) => {

View file

@ -149,6 +149,9 @@ impl<D: Db, T: Transaction, P: P2p> Tributary<D, T, P> {
pub fn commit(&self, hash: &[u8; 32]) -> Option<Vec<u8>> {
Blockchain::<D, T>::commit_from_db(&self.db, hash)
}
pub fn block_after(&self, hash: &[u8; 32]) -> Option<[u8; 32]> {
Blockchain::<D, T>::block_after(&self.db, hash)
}
pub fn time_of_block(&self, hash: &[u8; 32]) -> Option<u64> {
self
.commit(hash)

View file

@ -23,17 +23,18 @@ fn new_genesis() -> [u8; 32] {
fn new_blockchain<T: Transaction>(
genesis: [u8; 32],
participants: &[<Ristretto as Ciphersuite>::G],
) -> Blockchain<MemDb, T> {
let blockchain = Blockchain::new(MemDb::new(), genesis, participants);
) -> (MemDb, Blockchain<MemDb, T>) {
let db = MemDb::new();
let blockchain = Blockchain::new(db.clone(), genesis, participants);
assert_eq!(blockchain.tip(), genesis);
assert_eq!(blockchain.block_number(), 0);
blockchain
(db, blockchain)
}
#[test]
fn block_addition() {
let genesis = new_genesis();
let mut blockchain = new_blockchain::<SignedTransaction>(genesis, &[]);
let (db, mut blockchain) = new_blockchain::<SignedTransaction>(genesis, &[]);
let block = blockchain.build_block();
assert_eq!(block.header.parent, genesis);
assert_eq!(block.header.transactions, [0; 32]);
@ -41,12 +42,16 @@ fn block_addition() {
assert!(blockchain.add_block(&block, vec![]).is_ok());
assert_eq!(blockchain.tip(), block.hash());
assert_eq!(blockchain.block_number(), 1);
assert_eq!(
Blockchain::<MemDb, SignedTransaction>::block_after(&db, &block.parent()).unwrap(),
block.hash()
);
}
#[test]
fn invalid_block() {
let genesis = new_genesis();
let mut blockchain = new_blockchain::<SignedTransaction>(genesis, &[]);
let (_, mut blockchain) = new_blockchain::<SignedTransaction>(genesis, &[]);
let block = blockchain.build_block();
@ -77,7 +82,7 @@ fn invalid_block() {
}
// Run the rest of the tests with them as a participant
let blockchain = new_blockchain(genesis, &[tx.1.signer]);
let (_, blockchain) = new_blockchain(genesis, &[tx.1.signer]);
// Re-run the not a participant block to make sure it now works
{
@ -130,7 +135,7 @@ fn signed_transaction() {
let tx = crate::tests::signed_transaction(&mut OsRng, genesis, &key, 0);
let signer = tx.1.signer;
let mut blockchain = new_blockchain::<SignedTransaction>(genesis, &[signer]);
let (_, mut blockchain) = new_blockchain::<SignedTransaction>(genesis, &[signer]);
assert_eq!(blockchain.next_nonce(signer), Some(0));
let test = |blockchain: &mut Blockchain<MemDb, SignedTransaction>,
@ -176,7 +181,7 @@ fn signed_transaction() {
#[test]
fn provided_transaction() {
let genesis = new_genesis();
let mut blockchain = new_blockchain::<ProvidedTransaction>(genesis, &[]);
let (_, mut blockchain) = new_blockchain::<ProvidedTransaction>(genesis, &[]);
let tx = random_provided_transaction(&mut OsRng);