Simplify and test deterministically_sign

This commit is contained in:
Luke Parker 2025-01-18 15:13:39 -05:00
parent 8222ce78d8
commit 0d906363a0
No known key found for this signature in database
6 changed files with 66 additions and 31 deletions
processor/ethereum
TODO
deployer/src
primitives/src
router/src/tests
test-primitives/src

View file

@ -26,7 +26,7 @@ TODO
};
tx.gas_limit = 1_000_000u64.into();
tx.gas_price = 1_000_000_000u64.into();
let tx = ethereum_serai::crypto::deterministically_sign(&tx);
let tx = ethereum_serai::crypto::deterministically_sign(tx);
if self.provider.get_transaction_by_hash(*tx.hash()).await.unwrap().is_none() {
self

View file

@ -109,7 +109,7 @@ pub async fn deploy_contract(
input: bin,
};
let deployment_tx = deterministically_sign(&deployment_tx);
let deployment_tx = deterministically_sign(deployment_tx);
// Fund the deployer address
fund_account(

View file

@ -43,10 +43,13 @@ impl Deployer {
let bytecode =
Bytes::from_hex(BYTECODE).expect("compiled-in Deployer bytecode wasn't valid hex");
// Legacy transactions are used to ensure the widest possible degree of support across EVMs
let tx = TxLegacy {
chain_id: None,
nonce: 0,
// 100 gwei
// This uses a fixed gas price as necessary to achieve a deterministic address
// The gas price is fixed to 100 gwei, which should be incredibly generous, in order to make
// this getting stuck unlikely. While expensive, this only has to occur once
gas_price: 100_000_000_000u128,
// TODO: Use a more accurate gas limit
gas_limit: 1_000_000u64,
@ -55,7 +58,7 @@ impl Deployer {
input: bytecode,
};
ethereum_primitives::deterministically_sign(&tx)
ethereum_primitives::deterministically_sign(tx)
}
/// Obtain the deterministic address for this contract.

View file

@ -15,34 +15,66 @@ pub fn keccak256(data: impl AsRef<[u8]>) -> [u8; 32] {
/// Deterministically sign a transaction.
///
/// This signs a transaction via setting `r = 1, s = 1`, and incrementing `r` until a signer is
/// recoverable from the signature for this transaction. The purpose of this is to be able to send
/// a transaction from a known account which no one knows the private key for.
/// This signs a transaction via setting a signature of `r = 1, s = 1`. The purpose of this is to
/// be able to send a transaction from an account which no one knows the private key for and no
/// other messages may be signed for from.
///
/// This function panics if passed a transaction with a non-None chain ID. This is because the
/// signer for this transaction is only singular across any/all EVM instances if it isn't binding
/// to an instance.
pub fn deterministically_sign(tx: &TxLegacy) -> Signed<TxLegacy> {
pub fn deterministically_sign(tx: TxLegacy) -> Signed<TxLegacy> {
assert!(
tx.chain_id.is_none(),
"chain ID was Some when deterministically signing a TX (causing a non-singular signer)"
);
let mut r = Scalar::ONE;
/*
ECDSA signatures are:
- x = private key
- k = rand()
- R = k * G
- r = R.x()
- s = (H(m) + (r * x)) * k.invert()
Key recovery is performed via:
- a = s * R = (H(m) + (r * x)) * G
- b = a - (H(m) * G) = (r * x) * G
- X = b / r = x * G
- X = ((s * R) - (H(m) * G)) * r.invert()
This requires `r` be non-zero and `R` be recoverable from `r` and the parity byte. For
`r = 1, s = 1`, this sets `X` to `R - (H(m) * G)`. Since there is an `R` recoverable for
`r = 1`, since the `R` is a point with an unknown discrete logarithm w.r.t. the generator, and
since the resulting key is dependent on the message signed for, this will always work to
the specification.
*/
let r = Scalar::ONE;
let s = Scalar::ONE;
loop {
// Create the signature
let r_bytes: [u8; 32] = r.to_repr().into();
let s_bytes: [u8; 32] = s.to_repr().into();
let signature =
PrimitiveSignature::from_scalars_and_parity(r_bytes.into(), s_bytes.into(), false);
let r_bytes: [u8; 32] = r.to_repr().into();
let s_bytes: [u8; 32] = s.to_repr().into();
let signature =
PrimitiveSignature::from_scalars_and_parity(r_bytes.into(), s_bytes.into(), false);
// Check if this is a valid signature
let tx = tx.clone().into_signed(signature);
if tx.recover_signer().is_ok() {
return tx;
}
r += Scalar::ONE;
}
let res = tx.into_signed(signature);
debug_assert!(res.recover_signer().is_ok());
res
}
#[test]
fn test_deterministically_sign() {
let tx = TxLegacy { chain_id: None, ..Default::default() };
let signed = deterministically_sign(tx.clone());
assert!(signed.recover_signer().is_ok());
let one = alloy_core::primitives::U256::from(1u64);
assert_eq!(signed.signature().r(), one);
assert_eq!(signed.signature().s(), one);
let mut other_tx = tx.clone();
other_tx.nonce += 1;
// Signing a distinct message should yield a distinct signer
assert!(
signed.recover_signer().unwrap() != deterministically_sign(other_tx).recover_signer().unwrap()
);
}

View file

@ -84,7 +84,7 @@ async fn setup_test(
// Set a gas price (100 gwei)
tx.gas_price = 100_000_000_000;
// Sign it
let tx = ethereum_primitives::deterministically_sign(&tx);
let tx = ethereum_primitives::deterministically_sign(tx);
// Publish it
let receipt = ethereum_test_primitives::publish_tx(&provider, tx).await;
assert!(receipt.status());
@ -123,7 +123,7 @@ async fn confirm_next_serai_key(
let mut tx = router.confirm_next_serai_key(&sig);
tx.gas_price = 100_000_000_000;
let tx = ethereum_primitives::deterministically_sign(&tx);
let tx = ethereum_primitives::deterministically_sign(tx);
let receipt = ethereum_test_primitives::publish_tx(provider, tx).await;
assert!(receipt.status());
assert_eq!(
@ -164,7 +164,7 @@ async fn test_update_serai_key() {
let mut tx = router.update_serai_key(&update_to, &sig);
tx.gas_price = 100_000_000_000;
let tx = ethereum_primitives::deterministically_sign(&tx);
let tx = ethereum_primitives::deterministically_sign(tx);
let receipt = ethereum_test_primitives::publish_tx(&provider, tx).await;
assert!(receipt.status());
assert_eq!(u128::from(Router::UPDATE_SERAI_KEY_GAS), ((receipt.gas_used + 1000) / 1000) * 1000);
@ -199,7 +199,7 @@ async fn test_eth_in_instruction() {
.abi_encode()
.into(),
};
let tx = ethereum_primitives::deterministically_sign(&tx);
let tx = ethereum_primitives::deterministically_sign(tx);
let signer = tx.recover_signer().unwrap();
let receipt = ethereum_test_primitives::publish_tx(&provider, tx).await;
@ -250,7 +250,7 @@ async fn publish_outs(
let mut tx = router.execute(coin, fee, outs, &sig);
tx.gas_price = 100_000_000_000;
let tx = ethereum_primitives::deterministically_sign(&tx);
let tx = ethereum_primitives::deterministically_sign(tx);
ethereum_test_primitives::publish_tx(provider, tx).await
}
@ -307,7 +307,7 @@ async fn escape_hatch(
let mut tx = router.escape_hatch(escape_to, &sig);
tx.gas_price = 100_000_000_000;
let tx = ethereum_primitives::deterministically_sign(&tx);
let tx = ethereum_primitives::deterministically_sign(tx);
let receipt = ethereum_test_primitives::publish_tx(provider, tx).await;
assert!(receipt.status());
assert_eq!(u128::from(Router::ESCAPE_HATCH_GAS), ((receipt.gas_used + 1000) / 1000) * 1000);
@ -321,7 +321,7 @@ async fn escape(
) -> TransactionReceipt {
let mut tx = router.escape(coin.address());
tx.gas_price = 100_000_000_000;
let tx = ethereum_primitives::deterministically_sign(&tx);
let tx = ethereum_primitives::deterministically_sign(tx);
let receipt = ethereum_test_primitives::publish_tx(provider, tx).await;
assert!(receipt.status());
receipt

View file

@ -76,7 +76,7 @@ pub async fn deploy_contract(
input: bin.into(),
};
let deployment_tx = deterministically_sign(&deployment_tx);
let deployment_tx = deterministically_sign(deployment_tx);
let receipt = publish_tx(provider, deployment_tx).await;
assert!(receipt.status());