serai/spec/integrations/Ethereum.md

26 lines
851 B
Markdown
Raw Normal View History

# Ethereum
### Addresses
Ethereum addresses are 20-byte hashes.
### In Instructions
Ethereum In Instructions are present via being appended to the calldata
transferring funds to Serai. `origin` is automatically set to the party from
which funds are being transferred. For an ERC20, this is `from`. For ETH, this
Initial In Instructions pallet and Serai client lib (#233) * Initial work on an In Inherents pallet * Add an event for when a batch is executed * Add a dummy provider for InInstructions * Add in-instructions to the node * Add the Serai runtime API to the processor * Move processor tests around * Build a subxt Client around Serai * Successfully get Batch events from Serai Renamed processor/substrate to processor/serai. * Much more robust InInstruction pallet * Implement the workaround from https://github.com/paritytech/subxt/issues/602 * Initial prototype of processor generated InInstructions * Correct PendingCoins data flow for InInstructions * Minor lint to in-instructions * Remove the global Serai connection for a partial re-impl * Correct ID handling of the processor test * Workaround the delay in the subscription * Make an unwrap an if let Some, remove old comments * Lint the processor toml * Rebase and update * Move substrate/in-instructions to substrate/in-instructions/pallet * Start an in-instructions primitives lib * Properly update processor to subxt 0.24 Also corrects failures from the rebase. * in-instructions cargo update * Implement IsFatalError * is_inherent -> true * Rename in-instructions crates and misc cleanup * Update documentation * cargo update * Misc update fixes * Replace height with block_number * Update processor src to latest subxt * Correct pipeline for InInstructions testing * Remove runtime::AccountId for serai_primitives::NativeAddress * Rewrite the in-instructions pallet Complete with respect to the currently written docs. Drops the custom serializer for just using SCALE. Makes slight tweaks as relevant. * Move instructions' InherentDataProvider to a client crate * Correct doc gen * Add serde to in-instructions-primitives * Add in-instructions-primitives to pallet * Heights -> BlockNumbers * Get batch pub test loop working * Update in instructions pallet terminology Removes the ambiguous Coin for Update. Removes pending/artificial latency for furture client work. Also moves to using serai_primitives::Coin. * Add a BlockNumber primitive * Belated cargo fmt * Further document why DifferentBatch isn't fatal * Correct processor sleeps * Remove metadata at compile time, add test framework for Serai nodes * Remove manual RPC client * Simplify update test * Improve re-exporting behavior of serai-runtime It now re-exports all pallets underneath it. * Add a function to get storage values to the Serai RPC * Update substrate/ to latest substrate * Create a dedicated crate for the Serai RPC * Remove unused dependencies in substrate/ * Remove unused dependencies in coins/ Out of scope for this branch, just minor and path of least resistance. * Use substrate/serai/client for the Serai RPC lib It's a bit out of place, since these client folders are intended for the node to access pallets and so on. This is for end-users to access Serai as a whole. In that sense, it made more sense as a top level folder, yet that also felt out of place. * Move InInstructions test to serai-client for now * Final cleanup * Update deny.toml * Cargo.lock update from merging develop * Update nightly Attempt to work around the current CI failure, which is a Rust ICE. We previously didn't upgrade due to clippy 10134, yet that's been reverted. * clippy * clippy * fmt * NativeAddress -> SeraiAddress * Sec fix on non-provided updates and doc fixes * Add Serai as a Coin Necessary in order to swap to Serai. * Add a BlockHash type, used for batch IDs * Remove origin from InInstruction Makes InInstructionTarget. Adds RefundableInInstruction with origin. * Document storage items in in-instructions * Rename serai/client/tests/serai.rs to updates.rs It only tested publishing updates and their successful acceptance.
2023-01-20 16:00:18 +00:00
is the caller.
### Out Instructions
Initial In Instructions pallet and Serai client lib (#233) * Initial work on an In Inherents pallet * Add an event for when a batch is executed * Add a dummy provider for InInstructions * Add in-instructions to the node * Add the Serai runtime API to the processor * Move processor tests around * Build a subxt Client around Serai * Successfully get Batch events from Serai Renamed processor/substrate to processor/serai. * Much more robust InInstruction pallet * Implement the workaround from https://github.com/paritytech/subxt/issues/602 * Initial prototype of processor generated InInstructions * Correct PendingCoins data flow for InInstructions * Minor lint to in-instructions * Remove the global Serai connection for a partial re-impl * Correct ID handling of the processor test * Workaround the delay in the subscription * Make an unwrap an if let Some, remove old comments * Lint the processor toml * Rebase and update * Move substrate/in-instructions to substrate/in-instructions/pallet * Start an in-instructions primitives lib * Properly update processor to subxt 0.24 Also corrects failures from the rebase. * in-instructions cargo update * Implement IsFatalError * is_inherent -> true * Rename in-instructions crates and misc cleanup * Update documentation * cargo update * Misc update fixes * Replace height with block_number * Update processor src to latest subxt * Correct pipeline for InInstructions testing * Remove runtime::AccountId for serai_primitives::NativeAddress * Rewrite the in-instructions pallet Complete with respect to the currently written docs. Drops the custom serializer for just using SCALE. Makes slight tweaks as relevant. * Move instructions' InherentDataProvider to a client crate * Correct doc gen * Add serde to in-instructions-primitives * Add in-instructions-primitives to pallet * Heights -> BlockNumbers * Get batch pub test loop working * Update in instructions pallet terminology Removes the ambiguous Coin for Update. Removes pending/artificial latency for furture client work. Also moves to using serai_primitives::Coin. * Add a BlockNumber primitive * Belated cargo fmt * Further document why DifferentBatch isn't fatal * Correct processor sleeps * Remove metadata at compile time, add test framework for Serai nodes * Remove manual RPC client * Simplify update test * Improve re-exporting behavior of serai-runtime It now re-exports all pallets underneath it. * Add a function to get storage values to the Serai RPC * Update substrate/ to latest substrate * Create a dedicated crate for the Serai RPC * Remove unused dependencies in substrate/ * Remove unused dependencies in coins/ Out of scope for this branch, just minor and path of least resistance. * Use substrate/serai/client for the Serai RPC lib It's a bit out of place, since these client folders are intended for the node to access pallets and so on. This is for end-users to access Serai as a whole. In that sense, it made more sense as a top level folder, yet that also felt out of place. * Move InInstructions test to serai-client for now * Final cleanup * Update deny.toml * Cargo.lock update from merging develop * Update nightly Attempt to work around the current CI failure, which is a Rust ICE. We previously didn't upgrade due to clippy 10134, yet that's been reverted. * clippy * clippy * fmt * NativeAddress -> SeraiAddress * Sec fix on non-provided updates and doc fixes * Add Serai as a Coin Necessary in order to swap to Serai. * Add a BlockHash type, used for batch IDs * Remove origin from InInstruction Makes InInstructionTarget. Adds RefundableInInstruction with origin. * Document storage items in in-instructions * Rename serai/client/tests/serai.rs to updates.rs It only tested publishing updates and their successful acceptance.
2023-01-20 16:00:18 +00:00
`data` is limited to 512 bytes.
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
If `data` isn't provided or is malformed, ETH transfers will execute with 5,000
gas and token transfers with 100,000 gas.
If `data` is provided and well-formed, `destination` is ignored and the Ethereum
Router will construct and call a new contract to proxy the contained calls. The
transfer executes to the constructed contract as above, before the constructed
contract is called with the calls inside `data`. The sandboxed execution has a
gas limit of 350,000.