serai/sign/monero/tests/clsag.rs

156 lines
4.2 KiB
Rust
Raw Normal View History

use rand::{RngCore, rngs::OsRng};
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar};
use monero_sign::{SignError, random_scalar, commitment, key_image, clsag};
#[cfg(feature = "multisig")]
use ::frost::sign;
#[cfg(feature = "multisig")]
mod frost;
#[cfg(feature = "multisig")]
use crate::frost::generate_keys;
#[cfg(feature = "multisig")]
const THRESHOLD: usize = 5;
#[cfg(feature = "multisig")]
const PARTICIPANTS: usize = 8;
const RING_INDEX: u8 = 3;
const RING_LEN: u64 = 11;
const AMOUNT: u64 = 1337;
#[test]
fn test_single() -> Result<(), SignError> {
let msg = [1; 32];
let mut secrets = [Scalar::zero(), Scalar::zero()];
let mut ring = vec![];
for i in 0 .. RING_LEN {
let dest = random_scalar(&mut OsRng);
let a = random_scalar(&mut OsRng);
let amount;
if i == RING_INDEX.into() {
secrets = [dest, a];
amount = AMOUNT;
} else {
amount = OsRng.next_u64();
}
let mask = commitment(&a, amount);
ring.push([&dest * &ED25519_BASEPOINT_TABLE, mask]);
}
let image = key_image::single(&secrets[0]);
let (clsag, pseudo_out) = clsag::sign(
&mut OsRng,
image,
msg,
ring.clone(),
RING_INDEX,
&secrets[0],
&secrets[1],
AMOUNT
)?;
clsag::verify(&clsag, image, &msg, &ring, pseudo_out)?;
Ok(())
}
#[cfg(feature = "multisig")]
#[test]
fn test_multisig() -> Result<(), SignError> {
let (keys, group_private) = generate_keys(THRESHOLD, PARTICIPANTS);
let t = keys[0].params().t();
let mut images = vec![];
images.resize(PARTICIPANTS + 1, None);
let included = (1 ..= THRESHOLD).collect::<Vec<usize>>();
for i in &included {
let i = *i;
images[i] = Some(
(
keys[0].verification_shares()[i].0,
key_image::multisig(&mut OsRng, &keys[i - 1], &included)
)
);
}
let msg = [1; 32];
images.push(None);
let ki_used = images.swap_remove(1).unwrap().1;
let image = ki_used.resolve(images).unwrap();
let randomness = random_scalar(&mut OsRng);
let mut ring = vec![];
for i in 0 .. RING_LEN {
let dest;
let a;
let amount;
if i != RING_INDEX.into() {
dest = random_scalar(&mut OsRng);
a = random_scalar(&mut OsRng);
amount = OsRng.next_u64();
} else {
dest = group_private.0;
a = randomness;
amount = AMOUNT;
}
let mask = commitment(&a, amount);
ring.push([&dest * &ED25519_BASEPOINT_TABLE, mask]);
}
let mut machines = vec![];
let mut commitments = Vec::with_capacity(PARTICIPANTS + 1);
commitments.resize(PARTICIPANTS + 1, None);
for i in 1 ..= t {
machines.push(
sign::StateMachine::new(
sign::Params::new(
clsag::Multisig::new(image, msg, ring.clone(), RING_INDEX, &randomness, AMOUNT).unwrap(),
keys[i - 1].clone(),
&(1 ..= t).collect::<Vec<usize>>()
).unwrap()
)
);
commitments[i] = Some(machines[i - 1].preprocess(&mut OsRng).unwrap());
}
let mut shares = Vec::with_capacity(PARTICIPANTS + 1);
shares.resize(PARTICIPANTS + 1, None);
for i in 1 ..= t {
shares[i] = Some(
machines[i - 1].sign(
&commitments
.iter()
.enumerate()
.map(|(idx, value)| if idx == i { None } else { value.to_owned() })
.collect::<Vec<Option<Vec<u8>>>>(),
&vec![]
).unwrap()
);
}
let mut signature = None;
for i in 1 ..= t {
// Multisig does call verify to ensure integrity upon complete, before checking individual key
// shares. For FROST Schnorr, it's cheaper. For CLSAG, it may be more expensive? Yet it ensures
// we have usable signatures, not just signatures we think are usable
let sig = machines[i - 1].complete(
&shares
.iter()
.enumerate()
.map(|(idx, value)| if idx == i { None } else { value.to_owned() })
.collect::<Vec<Option<Vec<u8>>>>()
).unwrap();
if signature.is_none() {
signature = Some(sig.clone());
}
// Check the commitment out and the non-decoy s scalar are identical to every other signature
assert_eq!(sig.1, signature.as_ref().unwrap().1);
assert_eq!(sig.0.s[RING_INDEX as usize], signature.as_ref().unwrap().0.s[RING_INDEX as usize]);
}
Ok(())
}