serai/processor/src/substrate_signer.rs

358 lines
11 KiB
Rust
Raw Normal View History

use core::{marker::PhantomData, fmt};
use std::collections::{VecDeque, HashMap};
use rand_core::OsRng;
use scale::Encode;
use ciphersuite::group::GroupEncoding;
use frost::{
curve::Ristretto,
ThresholdKeys,
sign::{
Writable, PreprocessMachine, SignMachine, SignatureMachine, AlgorithmMachine,
AlgorithmSignMachine, AlgorithmSignatureMachine,
},
};
use frost_schnorrkel::Schnorrkel;
use log::{info, debug, warn};
use serai_client::{
primitives::BlockHash,
in_instructions::primitives::{Batch, SignedBatch, batch_message},
};
use messages::{sign::SignId, coordinator::*};
use crate::{Get, DbTxn, Db};
#[derive(Debug)]
pub enum SubstrateSignerEvent {
ProcessorMessage(ProcessorMessage),
SignedBatch(SignedBatch),
}
#[derive(Debug)]
struct SubstrateSignerDb<D: Db>(D);
impl<D: Db> SubstrateSignerDb<D> {
fn sign_key(dst: &'static [u8], key: impl AsRef<[u8]>) -> Vec<u8> {
D::key(b"SUBSTRATE_SIGNER", dst, key)
}
fn completed_key(id: [u8; 32]) -> Vec<u8> {
Self::sign_key(b"completed", id)
}
fn complete(txn: &mut D::Transaction<'_>, id: [u8; 32]) {
txn.put(Self::completed_key(id), [1]);
}
fn completed<G: Get>(getter: &G, id: [u8; 32]) -> bool {
getter.get(Self::completed_key(id)).is_some()
}
fn attempt_key(id: &SignId) -> Vec<u8> {
Self::sign_key(b"attempt", bincode::serialize(id).unwrap())
}
fn attempt(txn: &mut D::Transaction<'_>, id: &SignId) {
txn.put(Self::attempt_key(id), []);
}
fn has_attempt<G: Get>(getter: &G, id: &SignId) -> bool {
getter.get(Self::attempt_key(id)).is_some()
}
fn save_batch(txn: &mut D::Transaction<'_>, batch: &SignedBatch) {
txn.put(Self::sign_key(b"batch", batch.batch.block), batch.encode());
}
}
pub struct SubstrateSigner<D: Db> {
db: PhantomData<D>,
keys: ThresholdKeys<Ristretto>,
signable: HashMap<[u8; 32], Batch>,
attempt: HashMap<[u8; 32], u32>,
preprocessing: HashMap<[u8; 32], AlgorithmSignMachine<Ristretto, Schnorrkel>>,
signing: HashMap<[u8; 32], AlgorithmSignatureMachine<Ristretto, Schnorrkel>>,
pub events: VecDeque<SubstrateSignerEvent>,
}
impl<D: Db> fmt::Debug for SubstrateSigner<D> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt
.debug_struct("SubstrateSigner")
.field("signable", &self.signable)
.field("attempt", &self.attempt)
.finish_non_exhaustive()
}
}
impl<D: Db> SubstrateSigner<D> {
pub fn new(keys: ThresholdKeys<Ristretto>) -> SubstrateSigner<D> {
SubstrateSigner {
db: PhantomData,
keys,
signable: HashMap::new(),
attempt: HashMap::new(),
preprocessing: HashMap::new(),
signing: HashMap::new(),
events: VecDeque::new(),
}
}
fn verify_id(&self, id: &SignId) -> Result<(), ()> {
// Check the attempt lines up
match self.attempt.get(&id.id) {
// If we don't have an attempt logged, it's because the coordinator is faulty OR because we
// rebooted OR we detected the signed batch on chain
// The latter is the expected flow for batches not actively being participated in
None => {
warn!("not attempting batch {} #{}", hex::encode(id.id), id.attempt);
Err(())?;
}
Some(attempt) => {
if attempt != &id.attempt {
warn!(
"sent signing data for batch {} #{} yet we have attempt #{}",
hex::encode(id.id),
id.attempt,
attempt
);
Err(())?;
}
}
}
Ok(())
}
async fn attempt(&mut self, txn: &mut D::Transaction<'_>, id: [u8; 32], attempt: u32) {
// See above commentary for why this doesn't emit SignedBatch
if SubstrateSignerDb::<D>::completed(txn, id) {
return;
}
// Check if we're already working on this attempt
if let Some(curr_attempt) = self.attempt.get(&id) {
if curr_attempt >= &attempt {
warn!(
"told to attempt {} #{} yet we're already working on {}",
hex::encode(id),
attempt,
curr_attempt
);
return;
}
}
// Start this attempt
if !self.signable.contains_key(&id) {
warn!("told to attempt signing a batch we aren't currently signing for");
return;
};
// Delete any existing machines
self.preprocessing.remove(&id);
self.signing.remove(&id);
// Update the attempt number
self.attempt.insert(id, attempt);
let id = SignId { key: self.keys.group_key().to_bytes().to_vec(), id, attempt };
2023-07-26 18:02:17 +00:00
info!("signing batch {}, attempt #{}", hex::encode(id.id), id.attempt);
// If we reboot mid-sign, the current design has us abort all signs and wait for latter
// attempts/new signing protocols
// This is distinct from the DKG which will continue DKG sessions, even on reboot
// This is because signing is tolerant of failures of up to 1/3rd of the group
// The DKG requires 100% participation
// While we could apply similar tricks as the DKG (a seeded RNG) to achieve support for
// reboots, it's not worth the complexity when messing up here leaks our secret share
//
// Despite this, on reboot, we'll get told of active signing items, and may be in this
// branch again for something we've already attempted
//
// Only run if this hasn't already been attempted
if SubstrateSignerDb::<D>::has_attempt(txn, &id) {
warn!(
2023-07-26 18:02:17 +00:00
"already attempted batch {}, attempt #{}. this is an error if we didn't reboot",
hex::encode(id.id),
id.attempt
);
return;
}
SubstrateSignerDb::<D>::attempt(txn, &id);
// b"substrate" is a literal from sp-core
let machine = AlgorithmMachine::new(Schnorrkel::new(b"substrate"), self.keys.clone());
// TODO: Use a seeded RNG here so we don't produce distinct messages with the same purpose
// This is also needed so we don't preprocess, send preprocess, reboot before ack'ing the
// message, send distinct preprocess, and then attempt a signing session premised on the former
// with the latter
let (machine, preprocess) = machine.preprocess(&mut OsRng);
self.preprocessing.insert(id.id, machine);
// Broadcast our preprocess
self.events.push_back(SubstrateSignerEvent::ProcessorMessage(
ProcessorMessage::BatchPreprocess { id, preprocess: preprocess.serialize() },
));
}
pub async fn sign(&mut self, txn: &mut D::Transaction<'_>, batch: Batch) {
if SubstrateSignerDb::<D>::completed(txn, batch.block.0) {
debug!("Sign batch order for ID we've already completed signing");
// See batch_signed for commentary on why this simply returns
return;
}
// Use the block hash as the ID
let id = batch.block.0;
self.signable.insert(id, batch);
self.attempt(txn, id, 0).await;
}
pub async fn handle(&mut self, txn: &mut D::Transaction<'_>, msg: CoordinatorMessage) {
match msg {
CoordinatorMessage::BatchPreprocesses { id, mut preprocesses } => {
if self.verify_id(&id).is_err() {
return;
}
let machine = match self.preprocessing.remove(&id.id) {
// Either rebooted or RPC error, or some invariant
None => {
2023-04-11 10:06:17 +00:00
warn!(
"not preprocessing for {}. this is an error if we didn't reboot",
hex::encode(id.id)
);
return;
}
Some(machine) => machine,
};
let preprocesses = match preprocesses
.drain()
.map(|(l, preprocess)| {
let mut preprocess_ref = preprocess.as_ref();
let res = machine
.read_preprocess::<&[u8]>(&mut preprocess_ref)
.map(|preprocess| (l, preprocess));
if !preprocess_ref.is_empty() {
todo!("malicious signer: extra bytes");
}
res
})
.collect::<Result<_, _>>()
{
Ok(preprocesses) => preprocesses,
Err(e) => todo!("malicious signer: {:?}", e),
};
let (machine, share) =
match machine.sign(preprocesses, &batch_message(&self.signable[&id.id])) {
Ok(res) => res,
Err(e) => todo!("malicious signer: {:?}", e),
};
self.signing.insert(id.id, machine);
// Broadcast our share
let mut share_bytes = [0; 32];
share_bytes.copy_from_slice(&share.serialize());
self.events.push_back(SubstrateSignerEvent::ProcessorMessage(
ProcessorMessage::BatchShare { id, share: share_bytes },
));
}
CoordinatorMessage::BatchShares { id, mut shares } => {
if self.verify_id(&id).is_err() {
return;
}
let machine = match self.signing.remove(&id.id) {
// Rebooted, RPC error, or some invariant
None => {
// If preprocessing has this ID, it means we were never sent the preprocess by the
// coordinator
if self.preprocessing.contains_key(&id.id) {
panic!("never preprocessed yet signing?");
}
2023-04-11 10:06:17 +00:00
warn!(
"not preprocessing for {}. this is an error if we didn't reboot",
hex::encode(id.id)
);
return;
}
Some(machine) => machine,
};
let shares = match shares
.drain()
.map(|(l, share)| {
let mut share_ref = share.as_ref();
let res = machine.read_share::<&[u8]>(&mut share_ref).map(|share| (l, share));
if !share_ref.is_empty() {
todo!("malicious signer: extra bytes");
}
res
})
.collect::<Result<_, _>>()
{
Ok(shares) => shares,
Err(e) => todo!("malicious signer: {:?}", e),
};
let sig = match machine.complete(shares) {
Ok(res) => res,
Err(e) => todo!("malicious signer: {:?}", e),
};
info!("signed batch {} with attempt #{}", hex::encode(id.id), id.attempt);
let batch =
SignedBatch { batch: self.signable.remove(&id.id).unwrap(), signature: sig.into() };
// Save the batch in case it's needed for recovery
SubstrateSignerDb::<D>::save_batch(txn, &batch);
SubstrateSignerDb::<D>::complete(txn, id.id);
// Stop trying to sign for this batch
assert!(self.attempt.remove(&id.id).is_some());
assert!(self.preprocessing.remove(&id.id).is_none());
assert!(self.signing.remove(&id.id).is_none());
self.events.push_back(SubstrateSignerEvent::SignedBatch(batch));
}
CoordinatorMessage::BatchReattempt { id } => {
self.attempt(txn, id.id, id.attempt).await;
}
}
}
pub fn batch_signed(&mut self, txn: &mut D::Transaction<'_>, block: BlockHash) {
// Stop trying to sign for this batch
SubstrateSignerDb::<D>::complete(txn, block.0);
self.signable.remove(&block.0);
self.attempt.remove(&block.0);
self.preprocessing.remove(&block.0);
self.signing.remove(&block.0);
// This doesn't emit SignedBatch because it doesn't have access to the SignedBatch
// This function is expected to only be called once Substrate acknowledges this block,
// which means its batch must have been signed
// While a successive batch's signing would also cause this block to be acknowledged, Substrate
// guarantees a batch's ordered inclusion
// This also doesn't emit any further events since all mutation from the Batch being signed
// happens on the substrate::CoordinatorMessage::SubstrateBlock message (which SignedBatch is
// meant to end up triggering)
}
}