serai/processor/ethereum/erc20/src/lib.rs

198 lines
6.8 KiB
Rust
Raw Normal View History

2024-09-17 01:59:12 +00:00
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![deny(missing_docs)]
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
use std::{sync::Arc, collections::HashSet};
use alloy_core::primitives::{Address, B256, U256};
use alloy_sol_types::{SolInterface, SolEvent};
2024-06-13 19:57:08 +00:00
use alloy_rpc_types_eth::Filter;
2024-09-17 01:59:12 +00:00
use alloy_transport::{TransportErrorKind, RpcError};
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
use alloy_simple_request_transport::SimpleRequest;
use alloy_provider::{Provider, RootProvider};
use tokio::task::JoinSet;
2024-09-17 01:59:12 +00:00
#[rustfmt::skip]
#[expect(warnings)]
#[expect(needless_pass_by_value)]
#[expect(clippy::all)]
#[expect(clippy::ignored_unit_patterns)]
#[expect(clippy::redundant_closure_for_method_calls)]
mod abi {
alloy_sol_macro::sol!("contracts/IERC20.sol");
}
2024-09-17 05:07:08 +00:00
use abi::IERC20::{IERC20Calls, transferCall, transferFromCall};
pub use abi::IERC20::Transfer;
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
2024-09-17 01:59:12 +00:00
/// A top-level ERC20 transfer
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
#[derive(Clone, Debug)]
pub struct TopLevelTransfer {
/// The ID of the event for this transfer.
pub id: ([u8; 32], u64),
2024-09-17 01:59:12 +00:00
/// The address which made the transfer.
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
pub from: [u8; 20],
2024-09-17 01:59:12 +00:00
/// The amount transferred.
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
pub amount: U256,
2024-09-17 01:59:12 +00:00
/// The data appended after the call itself.
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
pub data: Vec<u8>,
}
/// A view for an ERC20 contract.
#[derive(Clone, Debug)]
pub struct Erc20(Arc<RootProvider<SimpleRequest>>, Address);
impl Erc20 {
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
/// Construct a new view of the specified ERC20 contract.
pub fn new(provider: Arc<RootProvider<SimpleRequest>>, address: [u8; 20]) -> Self {
Self(provider, Address::from(&address))
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
}
/// Match a transaction for its top-level transfer to the specified address (if one exists).
pub async fn match_top_level_transfer(
provider: impl AsRef<RootProvider<SimpleRequest>>,
transaction_id: B256,
to: Address,
) -> Result<Option<TopLevelTransfer>, RpcError<TransportErrorKind>> {
// Fetch the transaction
let transaction =
provider.as_ref().get_transaction_by_hash(transaction_id).await?.ok_or_else(|| {
TransportErrorKind::Custom(
"node didn't have the transaction which emitted a log it had".to_string().into(),
)
})?;
// If this is a top-level call...
// Don't validate the encoding as this can't be re-encoded to an identical bytestring due
// to the `InInstruction` appended after the call itself
if let Ok(call) = IERC20Calls::abi_decode(&transaction.input, false) {
// Extract the top-level call's from/to/value
let (from, call_to, value) = match call {
IERC20Calls::transfer(transferCall { to, value }) => (transaction.from, to, value),
IERC20Calls::transferFrom(transferFromCall { from, to, value }) => (from, to, value),
// Treat any other function selectors as unrecognized
_ => return Ok(None),
};
// If this isn't a transfer to the expected address, return None
if call_to != to {
return Ok(None);
}
// Fetch the transaction's logs
let receipt =
provider.as_ref().get_transaction_receipt(transaction_id).await?.ok_or_else(|| {
TransportErrorKind::Custom(
"node didn't have receipt for a transaction we were matching for a top-level transfer"
.to_string()
.into(),
)
})?;
// Find the log for this transfer
for log in receipt.inner.logs() {
// If this log was emitted by a different contract, continue
if Some(log.address()) != transaction.to {
continue;
}
// Check if this is actually a transfer log
// https://github.com/alloy-rs/core/issues/589
if log.topics().first() != Some(&Transfer::SIGNATURE_HASH) {
continue;
}
let log_index = log.log_index.ok_or_else(|| {
TransportErrorKind::Custom("log didn't have its index set".to_string().into())
})?;
let log = log
.log_decode::<Transfer>()
.map_err(|e| {
TransportErrorKind::Custom(format!("failed to decode Transfer log: {e:?}").into())
})?
.inner
.data;
// Ensure the top-level transfer is equivalent to the transfer this log represents. Since
// we can't find the exact top-level transfer without tracing the call, we just rule the
// first equivalent transfer as THE top-level transfer
if !((log.from == from) && (log.to == to) && (log.value == value)) {
continue;
}
// Read the data appended after
let encoded = call.abi_encode();
let data = transaction.input.as_ref()[encoded.len() ..].to_vec();
return Ok(Some(TopLevelTransfer {
id: (*transaction_id, log_index),
from: *log.from.0,
amount: log.value,
data,
}));
}
}
Ok(None)
}
/// Fetch all top-level transfers to the specified address.
///
/// The result of this function is unordered.
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
pub async fn top_level_transfers(
&self,
block: u64,
2024-09-17 05:07:08 +00:00
to: Address,
) -> Result<Vec<TopLevelTransfer>, RpcError<TransportErrorKind>> {
// Get all transfers within this block
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
let filter = Filter::new().from_block(block).to_block(block).address(self.1);
let filter = filter.event_signature(Transfer::SIGNATURE_HASH);
let mut to_topic = [0; 32];
2024-09-17 05:07:08 +00:00
to_topic[12 ..].copy_from_slice(to.as_ref());
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
let filter = filter.topic2(B256::from(to_topic));
2024-09-17 01:59:12 +00:00
let logs = self.0.get_logs(&filter).await?;
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
// These logs are for all transactions which performed any transfer
// We now check each transaction for having a top-level transfer to the specified address
let tx_ids = logs
.into_iter()
.map(|log| {
// Double check the address which emitted this log
if log.address() != self.1 {
Err(TransportErrorKind::Custom(
"node returned logs for a different address than requested".to_string().into(),
))?;
}
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
log.transaction_hash.ok_or_else(|| {
TransportErrorKind::Custom("log didn't specify its transaction hash".to_string().into())
})
})
.collect::<Result<HashSet<_>, _>>()?;
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
let mut join_set = JoinSet::new();
for tx_id in tx_ids {
join_set.spawn(Self::match_top_level_transfer(self.0.clone(), tx_id, to));
}
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
let mut top_level_transfers = vec![];
while let Some(top_level_transfer) = join_set.join_next().await {
// This is an error if a task panics or aborts
// Panicking on a task panic is desired behavior, and we haven't aborted any tasks
match top_level_transfer.unwrap() {
// Top-level transfer
Ok(Some(top_level_transfer)) => top_level_transfers.push(top_level_transfer),
// Not a top-level transfer
Ok(None) => continue,
// Failed to get this transaction's information so abort
Err(e) => {
join_set.abort_all();
Err(e)?
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
}
}
}
Ethereum Integration (#557) * Clean up Ethereum * Consistent contract address for deployed contracts * Flesh out Router a bit * Add a Deployer for DoS-less deployment * Implement Router-finding * Use CREATE2 helper present in ethers * Move from CREATE2 to CREATE Bit more streamlined for our use case. * Document ethereum-serai * Tidy tests a bit * Test updateSeraiKey * Use encodePacked for updateSeraiKey * Take in the block hash to read state during * Add a Sandbox contract to the Ethereum integration * Add retrieval of transfers from Ethereum * Add inInstruction function to the Router * Augment our handling of InInstructions events with a check the transfer event also exists * Have the Deployer error upon failed deployments * Add --via-ir * Make get_transaction test-only We only used it to get transactions to confirm the resolution of Eventualities. Eventualities need to be modularized. By introducing the dedicated confirm_completion function, we remove the need for a non-test get_transaction AND begin this modularization (by no longer explicitly grabbing a transaction to check with). * Modularize Eventuality Almost fully-deprecates the Transaction trait for Completion. Replaces Transaction ID with Claim. * Modularize the Scheduler behind a trait * Add an extremely basic account Scheduler * Add nonce uses, key rotation to the account scheduler * Only report the account Scheduler empty after transferring keys Also ban payments to the branch/change/forward addresses. * Make fns reliant on state test-only * Start of an Ethereum integration for the processor * Add a session to the Router to prevent updateSeraiKey replaying This would only happen if an old key was rotated to again, which would require n-of-n collusion (already ridiculous and a valid fault attributable event). It just clarifies the formal arguments. * Add a RouterCommand + SignMachine for producing it to coins/ethereum * Ethereum which compiles * Have branch/change/forward return an option Also defines a UtxoNetwork extension trait for MAX_INPUTS. * Make external_address exclusively a test fn * Move the "account" scheduler to "smart contract" * Remove ABI artifact * Move refund/forward Plan creation into the Processor We create forward Plans in the scan path, and need to know their exact fees in the scan path. This requires adding a somewhat wonky shim_forward_plan method so we can obtain a Plan equivalent to the actual forward Plan for fee reasons, yet don't expect it to be the actual forward Plan (which may be distinct if the Plan pulls from the global state, such as with a nonce). Also properly types a Scheduler addendum such that the SC scheduler isn't cramming the nonce to use into the N::Output type. * Flesh out the Ethereum integration more * Two commits ago, into the **Scheduler, not Processor * Remove misc TODOs in SC Scheduler * Add constructor to RouterCommandMachine * RouterCommand read, pairing with the prior added write * Further add serialization methods * Have the Router's key included with the InInstruction This does not use the key at the time of the event. This uses the key at the end of the block for the event. Its much simpler than getting the full event streams for each, checking when they interlace. This does not read the state. Every block, this makes a request for every single key update and simply chooses the last one. This allows pruning state, only keeping the event tree. Ideally, we'd also introduce a cache to reduce the cost of the filter (small in events yielded, long in blocks searched). Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of our Plans should solely have payments out, and there's no expectation of a Plan being made under one key broken by it being received by another key. * Add read/write to InInstruction * Abstract the ABI for Call/OutInstruction in ethereum-serai * Fill out signable_transaction for Ethereum * Move ethereum-serai to alloy Resolves #331. * Use the opaque sol macro instead of generated files * Move the processor over to the now-alloy-based ethereum-serai * Use the ecrecover provided by alloy * Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized) * Always use the latest keys for SC scheduled plans * get_eventuality_completions for Ethereum * Finish fleshing out the processor Ethereum integration as needed for serai-processor tests This doesn't not support any actual deployments, not even the ones simulated by serai-processor-docker-tests. * Add alloy-simple-request-transport to the GH workflows * cargo update * Clarify a few comments and make one check more robust * Use a string for 27.0 in .github * Remove optional from no-longer-optional dependencies in processor * Add alloy to git deny exception * Fix no longer optional specification in processor's binaries feature * Use a version of foundry from 2024 * Correct fetching Bitcoin TXs in the processor docker tests * Update rustls to resolve RUSTSEC warnings * Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 10:02:12 +00:00
Ok(top_level_transfers)
}
}