mirror of
https://github.com/serai-dex/serai.git
synced 2025-01-24 11:36:18 +00:00
862 lines
32 KiB
Rust
862 lines
32 KiB
Rust
|
use core::{marker::PhantomData, ops::Deref, fmt};
|
||
|
|
||
|
use subtle::*;
|
||
|
use zeroize::{Zeroize, Zeroizing};
|
||
|
|
||
|
use rand_core::{RngCore, CryptoRng, SeedableRng};
|
||
|
use rand_chacha::ChaCha20Rng;
|
||
|
|
||
|
use generic_array::{typenum::Unsigned, ArrayLength, GenericArray};
|
||
|
|
||
|
use blake2::{Digest, Blake2s256};
|
||
|
use ciphersuite::{
|
||
|
group::{
|
||
|
ff::{Field, PrimeField, PrimeFieldBits},
|
||
|
Group, GroupEncoding,
|
||
|
},
|
||
|
Ciphersuite,
|
||
|
};
|
||
|
|
||
|
use generalized_bulletproofs::{
|
||
|
*,
|
||
|
transcript::{Transcript as ProverTranscript, VerifierTranscript},
|
||
|
arithmetic_circuit_proof::*,
|
||
|
};
|
||
|
use generalized_bulletproofs_circuit_abstraction::*;
|
||
|
|
||
|
use ec_divisors::{DivisorCurve, new_divisor};
|
||
|
use generalized_bulletproofs_ec_gadgets::*;
|
||
|
|
||
|
/// A pair of curves to perform the eVRF with.
|
||
|
pub trait EvrfCurve: Ciphersuite {
|
||
|
type EmbeddedCurve: Ciphersuite<G: DivisorCurve<FieldElement = <Self as Ciphersuite>::F>>;
|
||
|
type EmbeddedCurveParameters: DiscreteLogParameters;
|
||
|
}
|
||
|
|
||
|
#[cfg(feature = "evrf-secp256k1")]
|
||
|
impl EvrfCurve for ciphersuite::Secp256k1 {
|
||
|
type EmbeddedCurve = secq256k1::Secq256k1;
|
||
|
type EmbeddedCurveParameters = secq256k1::Secq256k1;
|
||
|
}
|
||
|
|
||
|
#[cfg(feature = "evrf-ed25519")]
|
||
|
impl EvrfCurve for ciphersuite::Ed25519 {
|
||
|
type EmbeddedCurve = embedwards25519::Embedwards25519;
|
||
|
type EmbeddedCurveParameters = embedwards25519::Embedwards25519;
|
||
|
}
|
||
|
|
||
|
#[cfg(feature = "evrf-ristretto")]
|
||
|
impl EvrfCurve for ciphersuite::Ristretto {
|
||
|
type EmbeddedCurve = embedwards25519::Embedwards25519;
|
||
|
type EmbeddedCurveParameters = embedwards25519::Embedwards25519;
|
||
|
}
|
||
|
|
||
|
fn sample_point<C: Ciphersuite>(rng: &mut (impl RngCore + CryptoRng)) -> C::G {
|
||
|
let mut repr = <C::G as GroupEncoding>::Repr::default();
|
||
|
loop {
|
||
|
rng.fill_bytes(repr.as_mut());
|
||
|
if let Ok(point) = C::read_G(&mut repr.as_ref()) {
|
||
|
if bool::from(!point.is_identity()) {
|
||
|
return point;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Generators for eVRF proof.
|
||
|
#[derive(Clone, Debug)]
|
||
|
pub struct EvrfGenerators<C: EvrfCurve>(pub(crate) Generators<C>);
|
||
|
|
||
|
impl<C: EvrfCurve> EvrfGenerators<C> {
|
||
|
/// Create a new set of generators.
|
||
|
pub fn new(max_threshold: u16, max_participants: u16) -> EvrfGenerators<C> {
|
||
|
let g = C::generator();
|
||
|
let mut rng = ChaCha20Rng::from_seed(Blake2s256::digest(g.to_bytes()).into());
|
||
|
let h = sample_point::<C>(&mut rng);
|
||
|
let (_, generators) =
|
||
|
Evrf::<C>::muls_and_generators_to_use(max_threshold.into(), max_participants.into());
|
||
|
let mut g_bold = vec![];
|
||
|
let mut h_bold = vec![];
|
||
|
for _ in 0 .. generators {
|
||
|
g_bold.push(sample_point::<C>(&mut rng));
|
||
|
h_bold.push(sample_point::<C>(&mut rng));
|
||
|
}
|
||
|
Self(Generators::new(g, h, g_bold, h_bold).unwrap())
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// The result of proving for an eVRF.
|
||
|
pub(crate) struct EvrfProveResult<C: Ciphersuite> {
|
||
|
/// The coefficients for use in the DKG.
|
||
|
pub(crate) coefficients: Vec<Zeroizing<C::F>>,
|
||
|
/// The masks to encrypt secret shares with.
|
||
|
pub(crate) encryption_masks: Vec<Zeroizing<C::F>>,
|
||
|
/// The proof itself.
|
||
|
pub(crate) proof: Vec<u8>,
|
||
|
}
|
||
|
|
||
|
/// The result of verifying an eVRF.
|
||
|
pub(crate) struct EvrfVerifyResult<C: EvrfCurve> {
|
||
|
/// The commitments to the coefficients for use in the DKG.
|
||
|
pub(crate) coefficients: Vec<C::G>,
|
||
|
/// The ephemeral public keys to perform ECDHs with
|
||
|
pub(crate) ecdh_keys: Vec<[<C::EmbeddedCurve as Ciphersuite>::G; 2]>,
|
||
|
/// The commitments to the masks used to encrypt secret shares with.
|
||
|
pub(crate) encryption_commitments: Vec<C::G>,
|
||
|
}
|
||
|
|
||
|
impl<C: EvrfCurve> fmt::Debug for EvrfVerifyResult<C> {
|
||
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
|
fmt.debug_struct("EvrfVerifyResult").finish_non_exhaustive()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// A struct to prove/verify eVRFs with.
|
||
|
pub(crate) struct Evrf<C: EvrfCurve>(PhantomData<C>);
|
||
|
impl<C: EvrfCurve> Evrf<C> {
|
||
|
// Sample uniform points (via rejection-sampling) on the embedded elliptic curve
|
||
|
fn transcript_to_points(
|
||
|
seed: [u8; 32],
|
||
|
coefficients: usize,
|
||
|
) -> Vec<<C::EmbeddedCurve as Ciphersuite>::G> {
|
||
|
// We need to do two Diffie-Hellman's per coefficient in order to achieve an unbiased result
|
||
|
let quantity = 2 * coefficients;
|
||
|
|
||
|
let mut rng = ChaCha20Rng::from_seed(seed);
|
||
|
let mut res = Vec::with_capacity(quantity);
|
||
|
for _ in 0 .. quantity {
|
||
|
res.push(sample_point::<C::EmbeddedCurve>(&mut rng));
|
||
|
}
|
||
|
res
|
||
|
}
|
||
|
|
||
|
/// Read a Variable from a theoretical vector commitment tape
|
||
|
fn read_one_from_tape(generators_to_use: usize, start: &mut usize) -> Variable {
|
||
|
// Each commitment has twice as many variables as generators in use
|
||
|
let commitment = *start / (2 * generators_to_use);
|
||
|
// The index will be less than the amount of generators in use, as half are left and half are
|
||
|
// right
|
||
|
let index = *start % generators_to_use;
|
||
|
let res = if (*start / generators_to_use) % 2 == 0 {
|
||
|
Variable::CG { commitment, index }
|
||
|
} else {
|
||
|
Variable::CH { commitment, index }
|
||
|
};
|
||
|
*start += 1;
|
||
|
res
|
||
|
}
|
||
|
|
||
|
/// Read a set of variables from a theoretical vector commitment tape
|
||
|
fn read_from_tape<N: ArrayLength>(
|
||
|
generators_to_use: usize,
|
||
|
start: &mut usize,
|
||
|
) -> GenericArray<Variable, N> {
|
||
|
let mut buf = Vec::with_capacity(N::USIZE);
|
||
|
for _ in 0 .. N::USIZE {
|
||
|
buf.push(Self::read_one_from_tape(generators_to_use, start));
|
||
|
}
|
||
|
GenericArray::from_slice(&buf).clone()
|
||
|
}
|
||
|
|
||
|
/// Read `PointWithDlog`s, which share a discrete logarithm, from the theoretical vector
|
||
|
/// commitment tape.
|
||
|
fn point_with_dlogs(
|
||
|
start: &mut usize,
|
||
|
quantity: usize,
|
||
|
generators_to_use: usize,
|
||
|
) -> Vec<PointWithDlog<C::EmbeddedCurveParameters>> {
|
||
|
// We define a serialized tape of the discrete logarithm, then for each divisor/point, we push:
|
||
|
// zero, x**i, y x**i, y, x_coord, y_coord
|
||
|
// We then chunk that into vector commitments
|
||
|
// Here, we take the assumed layout and generate the expected `Variable`s for this layout
|
||
|
|
||
|
let dlog = Self::read_from_tape(generators_to_use, start);
|
||
|
|
||
|
let mut res = Vec::with_capacity(quantity);
|
||
|
let mut read_point_with_dlog = || {
|
||
|
let zero = Self::read_one_from_tape(generators_to_use, start);
|
||
|
let x_from_power_of_2 = Self::read_from_tape(generators_to_use, start);
|
||
|
let yx = Self::read_from_tape(generators_to_use, start);
|
||
|
let y = Self::read_one_from_tape(generators_to_use, start);
|
||
|
let divisor = Divisor { zero, x_from_power_of_2, yx, y };
|
||
|
|
||
|
let point = (
|
||
|
Self::read_one_from_tape(generators_to_use, start),
|
||
|
Self::read_one_from_tape(generators_to_use, start),
|
||
|
);
|
||
|
|
||
|
res.push(PointWithDlog { dlog: dlog.clone(), divisor, point });
|
||
|
};
|
||
|
|
||
|
for _ in 0 .. quantity {
|
||
|
read_point_with_dlog();
|
||
|
}
|
||
|
res
|
||
|
}
|
||
|
|
||
|
fn muls_and_generators_to_use(coefficients: usize, ecdhs: usize) -> (usize, usize) {
|
||
|
const MULS_PER_DH: usize = 7;
|
||
|
// 1 DH to prove the discrete logarithm corresponds to the eVRF public key
|
||
|
// 2 DHs per generated coefficient
|
||
|
// 2 DHs per generated ECDH
|
||
|
let expected_muls = MULS_PER_DH * (1 + (2 * coefficients) + (2 * 2 * ecdhs));
|
||
|
let generators_to_use = {
|
||
|
let mut padded_pow_of_2 = 1;
|
||
|
while padded_pow_of_2 < expected_muls {
|
||
|
padded_pow_of_2 <<= 1;
|
||
|
}
|
||
|
// This may as small as 16, which would create an excessive amount of vector commitments
|
||
|
// We set a floor of 1024 rows for bandwidth reasons
|
||
|
padded_pow_of_2.max(1024)
|
||
|
};
|
||
|
(expected_muls, generators_to_use)
|
||
|
}
|
||
|
|
||
|
fn circuit(
|
||
|
curve_spec: &CurveSpec<C::F>,
|
||
|
evrf_public_key: (C::F, C::F),
|
||
|
coefficients: usize,
|
||
|
ecdh_commitments: &[[(C::F, C::F); 2]],
|
||
|
generator_tables: &[GeneratorTable<C::F, C::EmbeddedCurveParameters>],
|
||
|
circuit: &mut Circuit<C>,
|
||
|
transcript: &mut impl Transcript,
|
||
|
) {
|
||
|
let (expected_muls, generators_to_use) =
|
||
|
Self::muls_and_generators_to_use(coefficients, ecdh_commitments.len());
|
||
|
let (challenge, challenged_generators) =
|
||
|
circuit.discrete_log_challenge(transcript, curve_spec, generator_tables);
|
||
|
debug_assert_eq!(challenged_generators.len(), 1 + (2 * coefficients) + ecdh_commitments.len());
|
||
|
|
||
|
// The generators tables/challenged generators are expected to have the following layouts
|
||
|
// G, coefficients * [A, B], ecdhs * [P]
|
||
|
#[allow(non_snake_case)]
|
||
|
let challenged_G = &challenged_generators[0];
|
||
|
|
||
|
// Execute the circuit for the coefficients
|
||
|
let mut tape_pos = 0;
|
||
|
{
|
||
|
let mut point_with_dlogs =
|
||
|
Self::point_with_dlogs(&mut tape_pos, 1 + (2 * coefficients), generators_to_use)
|
||
|
.into_iter();
|
||
|
|
||
|
// Verify the discrete logarithm is in the fact the discrete logarithm of the eVRF public key
|
||
|
let point = circuit.discrete_log(
|
||
|
curve_spec,
|
||
|
point_with_dlogs.next().unwrap(),
|
||
|
&challenge,
|
||
|
challenged_G,
|
||
|
);
|
||
|
circuit.equality(LinComb::from(point.x()), &LinComb::empty().constant(evrf_public_key.0));
|
||
|
circuit.equality(LinComb::from(point.y()), &LinComb::empty().constant(evrf_public_key.1));
|
||
|
|
||
|
// Verify the DLog claims against the sampled points
|
||
|
for (i, pair) in challenged_generators[1 ..].chunks(2).take(coefficients).enumerate() {
|
||
|
let mut lincomb = LinComb::empty();
|
||
|
debug_assert_eq!(pair.len(), 2);
|
||
|
for challenged_generator in pair {
|
||
|
let point = circuit.discrete_log(
|
||
|
curve_spec,
|
||
|
point_with_dlogs.next().unwrap(),
|
||
|
&challenge,
|
||
|
challenged_generator,
|
||
|
);
|
||
|
// For each point in this pair, add its x coordinate to a lincomb
|
||
|
lincomb = lincomb.term(C::F::ONE, point.x());
|
||
|
}
|
||
|
// Constrain the sum of the two x coordinates to be equal to the value in the Pedersen
|
||
|
// commitment
|
||
|
circuit.equality(lincomb, &LinComb::from(Variable::V(i)));
|
||
|
}
|
||
|
debug_assert!(point_with_dlogs.next().is_none());
|
||
|
}
|
||
|
|
||
|
// Now execute the circuit for the ECDHs
|
||
|
let mut challenged_generators = challenged_generators.iter().skip(1 + (2 * coefficients));
|
||
|
for (i, ecdh) in ecdh_commitments.iter().enumerate() {
|
||
|
let challenged_generator = challenged_generators.next().unwrap();
|
||
|
let mut lincomb = LinComb::empty();
|
||
|
for ecdh in ecdh {
|
||
|
let mut point_with_dlogs =
|
||
|
Self::point_with_dlogs(&mut tape_pos, 2, generators_to_use).into_iter();
|
||
|
|
||
|
// One proof of the ECDH secret * G for the commitment published
|
||
|
let point = circuit.discrete_log(
|
||
|
curve_spec,
|
||
|
point_with_dlogs.next().unwrap(),
|
||
|
&challenge,
|
||
|
challenged_G,
|
||
|
);
|
||
|
circuit.equality(LinComb::from(point.x()), &LinComb::empty().constant(ecdh.0));
|
||
|
circuit.equality(LinComb::from(point.y()), &LinComb::empty().constant(ecdh.1));
|
||
|
|
||
|
// One proof of the ECDH secret * P for the ECDH
|
||
|
let point = circuit.discrete_log(
|
||
|
curve_spec,
|
||
|
point_with_dlogs.next().unwrap(),
|
||
|
&challenge,
|
||
|
challenged_generator,
|
||
|
);
|
||
|
// For each point in this pair, add its x coordinate to a lincomb
|
||
|
lincomb = lincomb.term(C::F::ONE, point.x());
|
||
|
}
|
||
|
|
||
|
// Constrain the sum of the two x coordinates to be equal to the value in the Pedersen
|
||
|
// commitment
|
||
|
circuit.equality(lincomb, &LinComb::from(Variable::V(coefficients + i)));
|
||
|
}
|
||
|
|
||
|
debug_assert_eq!(expected_muls, circuit.muls());
|
||
|
debug_assert!(challenged_generators.next().is_none());
|
||
|
}
|
||
|
|
||
|
/// Convert a scalar to a sequence of coefficients for the polynomial 2**i, where the sum of the
|
||
|
/// coefficients is F::NUM_BITS.
|
||
|
///
|
||
|
/// Despite the name, the returned coefficients are not guaranteed to be bits (0 or 1).
|
||
|
///
|
||
|
/// This scalar will presumably be used in a discrete log proof. That requires calculating a
|
||
|
/// divisor which is variable time to the amount of points interpolated. Since the amount of
|
||
|
/// points interpolated is equal to the sum of the coefficients in the polynomial, we need all
|
||
|
/// scalars to have a constant sum of their coefficients (instead of one variable to its bits).
|
||
|
///
|
||
|
/// We achieve this by finding the highest non-0 coefficient, decrementing it, and increasing the
|
||
|
/// immediately less significant coefficient by 2. This increases the sum of the coefficients by
|
||
|
/// 1 (-1+2=1).
|
||
|
fn scalar_to_bits(scalar: &<C::EmbeddedCurve as Ciphersuite>::F) -> Vec<u64> {
|
||
|
let num_bits = u64::from(<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::F::NUM_BITS);
|
||
|
|
||
|
// Obtain the bits of the private key
|
||
|
let num_bits_usize = usize::try_from(num_bits).unwrap();
|
||
|
let mut decomposition = vec![0; num_bits_usize];
|
||
|
for (i, bit) in scalar.to_le_bits().into_iter().take(num_bits_usize).enumerate() {
|
||
|
let bit = u64::from(u8::from(bit));
|
||
|
decomposition[i] = bit;
|
||
|
}
|
||
|
|
||
|
// The following algorithm only works if the value of the scalar exceeds num_bits
|
||
|
// If it isn't, we increase it by the modulus such that it does exceed num_bits
|
||
|
{
|
||
|
let mut less_than_num_bits = Choice::from(0);
|
||
|
for i in 0 .. num_bits {
|
||
|
less_than_num_bits |= scalar.ct_eq(&<C::EmbeddedCurve as Ciphersuite>::F::from(i));
|
||
|
}
|
||
|
let mut decomposition_of_modulus = vec![0; num_bits_usize];
|
||
|
// Decompose negative one
|
||
|
for (i, bit) in (-<C::EmbeddedCurve as Ciphersuite>::F::ONE)
|
||
|
.to_le_bits()
|
||
|
.into_iter()
|
||
|
.take(num_bits_usize)
|
||
|
.enumerate()
|
||
|
{
|
||
|
let bit = u64::from(u8::from(bit));
|
||
|
decomposition_of_modulus[i] = bit;
|
||
|
}
|
||
|
// Increment it by one
|
||
|
decomposition_of_modulus[0] += 1;
|
||
|
|
||
|
// Add the decomposition onto the decomposition of the modulus
|
||
|
for i in 0 .. num_bits_usize {
|
||
|
let new_decomposition = <_>::conditional_select(
|
||
|
&decomposition[i],
|
||
|
&(decomposition[i] + decomposition_of_modulus[i]),
|
||
|
less_than_num_bits,
|
||
|
);
|
||
|
decomposition[i] = new_decomposition;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Calculcate the sum of the coefficients
|
||
|
let mut sum_of_coefficients: u64 = 0;
|
||
|
for decomposition in &decomposition {
|
||
|
sum_of_coefficients += *decomposition;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Now, because we added a log2(k)-bit number to a k-bit number, we may have our sum of
|
||
|
coefficients be *too high*. We attempt to reduce the sum of the coefficients accordingly.
|
||
|
|
||
|
This algorithm is guaranteed to complete as expected. Take the sequence `222`. `222` becomes
|
||
|
`032` becomes `013`. Even if the next coefficient in the sequence is `2`, the third
|
||
|
coefficient will be reduced once and the next coefficient (`2`, increased to `3`) will only
|
||
|
be eligible for reduction once. This demonstrates, even for a worst case of log2(k) `2`s
|
||
|
followed by `1`s (as possible if the modulus is a Mersenne prime), the log2(k) `2`s can be
|
||
|
reduced as necessary so long as there is a single coefficient after (requiring the entire
|
||
|
sequence be at least of length log2(k) + 1). For a 2-bit number, log2(k) + 1 == 2, so this
|
||
|
holds for any odd prime field.
|
||
|
|
||
|
To fully type out the demonstration for the Mersenne prime 3, with scalar to encode 1 (the
|
||
|
highest value less than the number of bits):
|
||
|
|
||
|
10 - Little-endian bits of 1
|
||
|
21 - Little-endian bits of 1, plus the modulus
|
||
|
02 - After one reduction, where the sum of the coefficients does in fact equal 2 (the target)
|
||
|
*/
|
||
|
{
|
||
|
let mut log2_num_bits = 0;
|
||
|
while (1 << log2_num_bits) < num_bits {
|
||
|
log2_num_bits += 1;
|
||
|
}
|
||
|
|
||
|
for _ in 0 .. log2_num_bits {
|
||
|
// If the sum of coefficients is the amount of bits, we're done
|
||
|
let mut done = sum_of_coefficients.ct_eq(&num_bits);
|
||
|
|
||
|
for i in 0 .. (num_bits_usize - 1) {
|
||
|
let should_act = (!done) & decomposition[i].ct_gt(&1);
|
||
|
// Subtract 2 from this coefficient
|
||
|
let amount_to_sub = <_>::conditional_select(&0, &2, should_act);
|
||
|
decomposition[i] -= amount_to_sub;
|
||
|
// Add 1 to the next coefficient
|
||
|
let amount_to_add = <_>::conditional_select(&0, &1, should_act);
|
||
|
decomposition[i + 1] += amount_to_add;
|
||
|
|
||
|
// Also update the sum of coefficients
|
||
|
sum_of_coefficients -= <_>::conditional_select(&0, &1, should_act);
|
||
|
|
||
|
// If we updated the coefficients this loop iter, we're done for this loop iter
|
||
|
done |= should_act;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for _ in 0 .. num_bits {
|
||
|
// If the sum of coefficients is the amount of bits, we're done
|
||
|
let mut done = sum_of_coefficients.ct_eq(&num_bits);
|
||
|
|
||
|
// Find the highest coefficient currently non-zero
|
||
|
for i in (1 .. decomposition.len()).rev() {
|
||
|
// If this is non-zero, we should decrement this coefficient if we haven't already
|
||
|
// decremented a coefficient this round
|
||
|
let is_non_zero = !(0.ct_eq(&decomposition[i]));
|
||
|
let should_act = (!done) & is_non_zero;
|
||
|
|
||
|
// Update this coefficient and the prior coefficient
|
||
|
let amount_to_sub = <_>::conditional_select(&0, &1, should_act);
|
||
|
decomposition[i] -= amount_to_sub;
|
||
|
|
||
|
let amount_to_add = <_>::conditional_select(&0, &2, should_act);
|
||
|
// i must be at least 1, so i - 1 will be at least 0 (meaning it's safe to index with)
|
||
|
decomposition[i - 1] += amount_to_add;
|
||
|
|
||
|
// Also update the sum of coefficients
|
||
|
sum_of_coefficients += <_>::conditional_select(&0, &1, should_act);
|
||
|
|
||
|
// If we updated the coefficients this loop iter, we're done for this loop iter
|
||
|
done |= should_act;
|
||
|
}
|
||
|
}
|
||
|
debug_assert!(bool::from(decomposition.iter().sum::<u64>().ct_eq(&num_bits)));
|
||
|
|
||
|
decomposition
|
||
|
}
|
||
|
|
||
|
/// Prove a point on an elliptic curve had its discrete logarithm generated via an eVRF.
|
||
|
pub(crate) fn prove(
|
||
|
rng: &mut (impl RngCore + CryptoRng),
|
||
|
generators: &Generators<C>,
|
||
|
transcript: [u8; 32],
|
||
|
coefficients: usize,
|
||
|
ecdh_public_keys: &[<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G],
|
||
|
evrf_private_key: &Zeroizing<<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::F>,
|
||
|
) -> Result<EvrfProveResult<C>, AcError> {
|
||
|
let curve_spec = CurveSpec {
|
||
|
a: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::a(),
|
||
|
b: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::b(),
|
||
|
};
|
||
|
|
||
|
// A tape of the discrete logarithm, then [zero, x**i, y x**i, y, x_coord, y_coord]
|
||
|
let mut vector_commitment_tape = vec![];
|
||
|
|
||
|
let mut generator_tables = Vec::with_capacity(1 + (2 * coefficients) + ecdh_public_keys.len());
|
||
|
|
||
|
// A function to calculate a divisor and push it onto the tape
|
||
|
// This defines a vec, divisor_points, outside of the fn to reuse its allocation
|
||
|
let mut divisor_points =
|
||
|
Vec::with_capacity((<C::EmbeddedCurve as Ciphersuite>::F::NUM_BITS as usize) + 1);
|
||
|
let mut divisor =
|
||
|
|vector_commitment_tape: &mut Vec<_>,
|
||
|
dlog: &[u64],
|
||
|
push_generator: bool,
|
||
|
generator: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G,
|
||
|
dh: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G| {
|
||
|
if push_generator {
|
||
|
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(generator).unwrap();
|
||
|
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
|
||
|
}
|
||
|
|
||
|
{
|
||
|
let mut generator = generator;
|
||
|
for coefficient in dlog {
|
||
|
let mut coefficient = *coefficient;
|
||
|
while coefficient != 0 {
|
||
|
coefficient -= 1;
|
||
|
divisor_points.push(generator);
|
||
|
}
|
||
|
generator = generator.double();
|
||
|
}
|
||
|
debug_assert_eq!(
|
||
|
dlog.iter().sum::<u64>(),
|
||
|
u64::from(<C::EmbeddedCurve as Ciphersuite>::F::NUM_BITS)
|
||
|
);
|
||
|
}
|
||
|
divisor_points.push(-dh);
|
||
|
let mut divisor = new_divisor(&divisor_points).unwrap().normalize_x_coefficient();
|
||
|
divisor_points.zeroize();
|
||
|
|
||
|
vector_commitment_tape.push(divisor.zero_coefficient);
|
||
|
|
||
|
for coefficient in divisor.x_coefficients.iter().skip(1) {
|
||
|
vector_commitment_tape.push(*coefficient);
|
||
|
}
|
||
|
for _ in divisor.x_coefficients.len() ..
|
||
|
<C::EmbeddedCurveParameters as DiscreteLogParameters>::XCoefficientsMinusOne::USIZE
|
||
|
{
|
||
|
vector_commitment_tape.push(<C as Ciphersuite>::F::ZERO);
|
||
|
}
|
||
|
|
||
|
for coefficient in divisor.yx_coefficients.first().unwrap_or(&vec![]) {
|
||
|
vector_commitment_tape.push(*coefficient);
|
||
|
}
|
||
|
for _ in divisor.yx_coefficients.first().unwrap_or(&vec![]).len() ..
|
||
|
<C::EmbeddedCurveParameters as DiscreteLogParameters>::YxCoefficients::USIZE
|
||
|
{
|
||
|
vector_commitment_tape.push(<C as Ciphersuite>::F::ZERO);
|
||
|
}
|
||
|
|
||
|
vector_commitment_tape
|
||
|
.push(divisor.y_coefficients.first().copied().unwrap_or(<C as Ciphersuite>::F::ZERO));
|
||
|
|
||
|
divisor.zeroize();
|
||
|
drop(divisor);
|
||
|
|
||
|
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(dh).unwrap();
|
||
|
vector_commitment_tape.push(x);
|
||
|
vector_commitment_tape.push(y);
|
||
|
|
||
|
(x, y)
|
||
|
};
|
||
|
|
||
|
// Start with the coefficients
|
||
|
let evrf_public_key;
|
||
|
let mut actual_coefficients = Vec::with_capacity(coefficients);
|
||
|
{
|
||
|
let mut dlog = Self::scalar_to_bits(evrf_private_key);
|
||
|
let points = Self::transcript_to_points(transcript, coefficients);
|
||
|
|
||
|
// Start by pushing the discrete logarithm onto the tape
|
||
|
for coefficient in &dlog {
|
||
|
vector_commitment_tape.push(<_>::from(*coefficient));
|
||
|
}
|
||
|
|
||
|
// Push a divisor for proving that we're using the correct scalar
|
||
|
evrf_public_key = divisor(
|
||
|
&mut vector_commitment_tape,
|
||
|
&dlog,
|
||
|
true,
|
||
|
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator(),
|
||
|
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator() * evrf_private_key.deref(),
|
||
|
);
|
||
|
|
||
|
// Push a divisor for each point we use in the eVRF
|
||
|
for pair in points.chunks(2) {
|
||
|
let mut res = Zeroizing::new(C::F::ZERO);
|
||
|
for point in pair {
|
||
|
let (dh_x, _) = divisor(
|
||
|
&mut vector_commitment_tape,
|
||
|
&dlog,
|
||
|
true,
|
||
|
*point,
|
||
|
*point * evrf_private_key.deref(),
|
||
|
);
|
||
|
*res += dh_x;
|
||
|
}
|
||
|
actual_coefficients.push(res);
|
||
|
}
|
||
|
debug_assert_eq!(actual_coefficients.len(), coefficients);
|
||
|
|
||
|
dlog.zeroize();
|
||
|
}
|
||
|
|
||
|
// Now do the ECDHs for the encryption
|
||
|
let mut encryption_masks = Vec::with_capacity(ecdh_public_keys.len());
|
||
|
let mut ecdh_commitments = Vec::with_capacity(2 * ecdh_public_keys.len());
|
||
|
let mut ecdh_commitments_xy = Vec::with_capacity(ecdh_public_keys.len());
|
||
|
for ecdh_public_key in ecdh_public_keys {
|
||
|
ecdh_commitments_xy.push([(C::F::ZERO, C::F::ZERO); 2]);
|
||
|
|
||
|
let mut res = Zeroizing::new(C::F::ZERO);
|
||
|
for j in 0 .. 2 {
|
||
|
let mut ecdh_private_key;
|
||
|
loop {
|
||
|
ecdh_private_key = <C::EmbeddedCurve as Ciphersuite>::F::random(&mut *rng);
|
||
|
// Generate a non-0 ECDH private key, as necessary to not produce an identity output
|
||
|
// Identity isn't representable with the divisors, hence the explicit effort
|
||
|
if bool::from(!ecdh_private_key.is_zero()) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
let mut dlog = Self::scalar_to_bits(&ecdh_private_key);
|
||
|
let ecdh_commitment = <C::EmbeddedCurve as Ciphersuite>::generator() * ecdh_private_key;
|
||
|
ecdh_commitments.push(ecdh_commitment);
|
||
|
ecdh_commitments_xy.last_mut().unwrap()[j] =
|
||
|
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_commitment).unwrap();
|
||
|
|
||
|
// Start by pushing the discrete logarithm onto the tape
|
||
|
for coefficient in &dlog {
|
||
|
vector_commitment_tape.push(<_>::from(*coefficient));
|
||
|
}
|
||
|
|
||
|
// Push a divisor for proving that we're using the correct scalar for the commitment
|
||
|
divisor(
|
||
|
&mut vector_commitment_tape,
|
||
|
&dlog,
|
||
|
false,
|
||
|
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator(),
|
||
|
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator() * ecdh_private_key,
|
||
|
);
|
||
|
// Push a divisor for the key we're performing the ECDH with
|
||
|
let (dh_x, _) = divisor(
|
||
|
&mut vector_commitment_tape,
|
||
|
&dlog,
|
||
|
j == 0,
|
||
|
*ecdh_public_key,
|
||
|
*ecdh_public_key * ecdh_private_key,
|
||
|
);
|
||
|
*res += dh_x;
|
||
|
|
||
|
ecdh_private_key.zeroize();
|
||
|
dlog.zeroize();
|
||
|
}
|
||
|
encryption_masks.push(res);
|
||
|
}
|
||
|
debug_assert_eq!(encryption_masks.len(), ecdh_public_keys.len());
|
||
|
|
||
|
// Now that we have the vector commitment tape, chunk it
|
||
|
let (_, generators_to_use) =
|
||
|
Self::muls_and_generators_to_use(coefficients, ecdh_public_keys.len());
|
||
|
|
||
|
let mut vector_commitments =
|
||
|
Vec::with_capacity(vector_commitment_tape.len().div_ceil(2 * generators_to_use));
|
||
|
for chunk in vector_commitment_tape.chunks(2 * generators_to_use) {
|
||
|
let g_values = chunk[.. generators_to_use.min(chunk.len())].to_vec().into();
|
||
|
let h_values = chunk[generators_to_use.min(chunk.len()) ..].to_vec().into();
|
||
|
vector_commitments.push(PedersenVectorCommitment {
|
||
|
g_values,
|
||
|
h_values,
|
||
|
mask: C::F::random(&mut *rng),
|
||
|
});
|
||
|
}
|
||
|
|
||
|
vector_commitment_tape.zeroize();
|
||
|
drop(vector_commitment_tape);
|
||
|
|
||
|
let mut commitments = Vec::with_capacity(coefficients + ecdh_public_keys.len());
|
||
|
for coefficient in &actual_coefficients {
|
||
|
commitments.push(PedersenCommitment { value: **coefficient, mask: C::F::random(&mut *rng) });
|
||
|
}
|
||
|
for enc_mask in &encryption_masks {
|
||
|
commitments.push(PedersenCommitment { value: **enc_mask, mask: C::F::random(&mut *rng) });
|
||
|
}
|
||
|
|
||
|
let mut transcript = ProverTranscript::new(transcript);
|
||
|
let commited_commitments = transcript.write_commitments(
|
||
|
vector_commitments
|
||
|
.iter()
|
||
|
.map(|commitment| {
|
||
|
commitment
|
||
|
.commit(generators.g_bold_slice(), generators.h_bold_slice(), generators.h())
|
||
|
.ok_or(AcError::NotEnoughGenerators)
|
||
|
})
|
||
|
.collect::<Result<_, _>>()?,
|
||
|
commitments
|
||
|
.iter()
|
||
|
.map(|commitment| commitment.commit(generators.g(), generators.h()))
|
||
|
.collect(),
|
||
|
);
|
||
|
for ecdh_commitment in ecdh_commitments {
|
||
|
transcript.push_point(ecdh_commitment);
|
||
|
}
|
||
|
|
||
|
let mut circuit = Circuit::prove(vector_commitments, commitments.clone());
|
||
|
Self::circuit(
|
||
|
&curve_spec,
|
||
|
evrf_public_key,
|
||
|
coefficients,
|
||
|
&ecdh_commitments_xy,
|
||
|
&generator_tables,
|
||
|
&mut circuit,
|
||
|
&mut transcript,
|
||
|
);
|
||
|
|
||
|
let (statement, Some(witness)) = circuit
|
||
|
.statement(
|
||
|
generators.reduce(generators_to_use).ok_or(AcError::NotEnoughGenerators)?,
|
||
|
commited_commitments,
|
||
|
)
|
||
|
.unwrap()
|
||
|
else {
|
||
|
panic!("proving yet wasn't yielded the witness");
|
||
|
};
|
||
|
statement.prove(&mut *rng, &mut transcript, witness).unwrap();
|
||
|
|
||
|
// Push the reveal onto the transcript
|
||
|
for commitment in &commitments {
|
||
|
transcript.push_point(generators.g() * commitment.value);
|
||
|
}
|
||
|
|
||
|
// Define a weight to aggregate the commitments with
|
||
|
let mut agg_weights = Vec::with_capacity(commitments.len());
|
||
|
agg_weights.push(C::F::ONE);
|
||
|
while agg_weights.len() < commitments.len() {
|
||
|
agg_weights.push(transcript.challenge::<C::F>());
|
||
|
}
|
||
|
let mut x = commitments
|
||
|
.iter()
|
||
|
.zip(&agg_weights)
|
||
|
.map(|(commitment, weight)| commitment.mask * *weight)
|
||
|
.sum::<C::F>();
|
||
|
|
||
|
// Do a Schnorr PoK for the randomness of the aggregated Pedersen commitment
|
||
|
let mut r = C::F::random(&mut *rng);
|
||
|
transcript.push_point(generators.h() * r);
|
||
|
let c = transcript.challenge::<C::F>();
|
||
|
transcript.push_scalar(r + (c * x));
|
||
|
r.zeroize();
|
||
|
x.zeroize();
|
||
|
|
||
|
Ok(EvrfProveResult {
|
||
|
coefficients: actual_coefficients,
|
||
|
encryption_masks,
|
||
|
proof: transcript.complete(),
|
||
|
})
|
||
|
}
|
||
|
|
||
|
/// Verify an eVRF proof, returning the commitments output.
|
||
|
#[allow(clippy::too_many_arguments)]
|
||
|
pub(crate) fn verify(
|
||
|
rng: &mut (impl RngCore + CryptoRng),
|
||
|
generators: &Generators<C>,
|
||
|
verifier: &mut BatchVerifier<C>,
|
||
|
transcript: [u8; 32],
|
||
|
coefficients: usize,
|
||
|
ecdh_public_keys: &[<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G],
|
||
|
evrf_public_key: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G,
|
||
|
proof: &[u8],
|
||
|
) -> Result<EvrfVerifyResult<C>, ()> {
|
||
|
let curve_spec = CurveSpec {
|
||
|
a: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::a(),
|
||
|
b: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::b(),
|
||
|
};
|
||
|
|
||
|
let mut generator_tables = Vec::with_capacity(1 + (2 * coefficients) + ecdh_public_keys.len());
|
||
|
{
|
||
|
let (x, y) =
|
||
|
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(<C::EmbeddedCurve as Ciphersuite>::generator())
|
||
|
.unwrap();
|
||
|
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
|
||
|
}
|
||
|
let points = Self::transcript_to_points(transcript, coefficients);
|
||
|
for generator in points {
|
||
|
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(generator).unwrap();
|
||
|
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
|
||
|
}
|
||
|
for generator in ecdh_public_keys {
|
||
|
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(*generator).unwrap();
|
||
|
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
|
||
|
}
|
||
|
|
||
|
let (_, generators_to_use) =
|
||
|
Self::muls_and_generators_to_use(coefficients, ecdh_public_keys.len());
|
||
|
|
||
|
let mut transcript = VerifierTranscript::new(transcript, proof);
|
||
|
|
||
|
let dlog_len = <C::EmbeddedCurveParameters as DiscreteLogParameters>::ScalarBits::USIZE;
|
||
|
let divisor_len = 1 +
|
||
|
<C::EmbeddedCurveParameters as DiscreteLogParameters>::XCoefficientsMinusOne::USIZE +
|
||
|
<C::EmbeddedCurveParameters as DiscreteLogParameters>::YxCoefficients::USIZE +
|
||
|
1;
|
||
|
let dlog_proof_len = divisor_len + 2;
|
||
|
|
||
|
let coeffs_vc_variables = dlog_len + ((1 + (2 * coefficients)) * dlog_proof_len);
|
||
|
let ecdhs_vc_variables = ((2 * ecdh_public_keys.len()) * dlog_len) +
|
||
|
((2 * 2 * ecdh_public_keys.len()) * dlog_proof_len);
|
||
|
let vcs = (coeffs_vc_variables + ecdhs_vc_variables).div_ceil(2 * generators_to_use);
|
||
|
|
||
|
let all_commitments =
|
||
|
transcript.read_commitments(vcs, coefficients + ecdh_public_keys.len()).map_err(|_| ())?;
|
||
|
let commitments = all_commitments.V().to_vec();
|
||
|
|
||
|
let mut ecdh_keys = Vec::with_capacity(ecdh_public_keys.len());
|
||
|
let mut ecdh_keys_xy = Vec::with_capacity(ecdh_public_keys.len());
|
||
|
for _ in 0 .. ecdh_public_keys.len() {
|
||
|
let ecdh_keys_i = [
|
||
|
transcript.read_point::<C::EmbeddedCurve>().map_err(|_| ())?,
|
||
|
transcript.read_point::<C::EmbeddedCurve>().map_err(|_| ())?,
|
||
|
];
|
||
|
ecdh_keys.push(ecdh_keys_i);
|
||
|
// This bans zero ECDH keys
|
||
|
ecdh_keys_xy.push([
|
||
|
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_keys_i[0]).ok_or(())?,
|
||
|
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_keys_i[1]).ok_or(())?,
|
||
|
]);
|
||
|
}
|
||
|
|
||
|
let mut circuit = Circuit::verify();
|
||
|
Self::circuit(
|
||
|
&curve_spec,
|
||
|
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(evrf_public_key).ok_or(())?,
|
||
|
coefficients,
|
||
|
&ecdh_keys_xy,
|
||
|
&generator_tables,
|
||
|
&mut circuit,
|
||
|
&mut transcript,
|
||
|
);
|
||
|
|
||
|
let (statement, None) =
|
||
|
circuit.statement(generators.reduce(generators_to_use).ok_or(())?, all_commitments).unwrap()
|
||
|
else {
|
||
|
panic!("verifying yet was yielded a witness");
|
||
|
};
|
||
|
|
||
|
statement.verify(rng, verifier, &mut transcript).map_err(|_| ())?;
|
||
|
|
||
|
// Read the openings for the commitments
|
||
|
let mut openings = Vec::with_capacity(commitments.len());
|
||
|
for _ in 0 .. commitments.len() {
|
||
|
openings.push(transcript.read_point::<C>().map_err(|_| ())?);
|
||
|
}
|
||
|
|
||
|
// Verify the openings of the commitments
|
||
|
let mut agg_weights = Vec::with_capacity(commitments.len());
|
||
|
agg_weights.push(C::F::ONE);
|
||
|
while agg_weights.len() < commitments.len() {
|
||
|
agg_weights.push(transcript.challenge::<C::F>());
|
||
|
}
|
||
|
|
||
|
let sum_points =
|
||
|
openings.iter().zip(&agg_weights).map(|(point, weight)| *point * *weight).sum::<C::G>();
|
||
|
let sum_commitments =
|
||
|
commitments.into_iter().zip(agg_weights).map(|(point, weight)| point * weight).sum::<C::G>();
|
||
|
#[allow(non_snake_case)]
|
||
|
let A = sum_commitments - sum_points;
|
||
|
|
||
|
#[allow(non_snake_case)]
|
||
|
let R = transcript.read_point::<C>().map_err(|_| ())?;
|
||
|
let c = transcript.challenge::<C::F>();
|
||
|
let s = transcript.read_scalar::<C>().map_err(|_| ())?;
|
||
|
|
||
|
// Doesn't batch verify this as we can't access the internals of the GBP batch verifier
|
||
|
if (R + (A * c)) != (generators.h() * s) {
|
||
|
Err(())?;
|
||
|
}
|
||
|
|
||
|
if !transcript.complete().is_empty() {
|
||
|
Err(())?
|
||
|
};
|
||
|
|
||
|
let encryption_commitments = openings[coefficients ..].to_vec();
|
||
|
let coefficients = openings[.. coefficients].to_vec();
|
||
|
Ok(EvrfVerifyResult { coefficients, ecdh_keys, encryption_commitments })
|
||
|
}
|
||
|
}
|