serai/crypto/dkg/src/evrf/proof.rs

862 lines
32 KiB
Rust
Raw Normal View History

One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 18:26:07 +00:00
use core::{marker::PhantomData, ops::Deref, fmt};
use subtle::*;
use zeroize::{Zeroize, Zeroizing};
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha20Rng;
use generic_array::{typenum::Unsigned, ArrayLength, GenericArray};
use blake2::{Digest, Blake2s256};
use ciphersuite::{
group::{
ff::{Field, PrimeField, PrimeFieldBits},
Group, GroupEncoding,
},
Ciphersuite,
};
use generalized_bulletproofs::{
*,
transcript::{Transcript as ProverTranscript, VerifierTranscript},
arithmetic_circuit_proof::*,
};
use generalized_bulletproofs_circuit_abstraction::*;
use ec_divisors::{DivisorCurve, new_divisor};
use generalized_bulletproofs_ec_gadgets::*;
/// A pair of curves to perform the eVRF with.
pub trait EvrfCurve: Ciphersuite {
type EmbeddedCurve: Ciphersuite<G: DivisorCurve<FieldElement = <Self as Ciphersuite>::F>>;
type EmbeddedCurveParameters: DiscreteLogParameters;
}
#[cfg(feature = "evrf-secp256k1")]
impl EvrfCurve for ciphersuite::Secp256k1 {
type EmbeddedCurve = secq256k1::Secq256k1;
type EmbeddedCurveParameters = secq256k1::Secq256k1;
}
#[cfg(feature = "evrf-ed25519")]
impl EvrfCurve for ciphersuite::Ed25519 {
type EmbeddedCurve = embedwards25519::Embedwards25519;
type EmbeddedCurveParameters = embedwards25519::Embedwards25519;
}
#[cfg(feature = "evrf-ristretto")]
impl EvrfCurve for ciphersuite::Ristretto {
type EmbeddedCurve = embedwards25519::Embedwards25519;
type EmbeddedCurveParameters = embedwards25519::Embedwards25519;
}
fn sample_point<C: Ciphersuite>(rng: &mut (impl RngCore + CryptoRng)) -> C::G {
let mut repr = <C::G as GroupEncoding>::Repr::default();
loop {
rng.fill_bytes(repr.as_mut());
if let Ok(point) = C::read_G(&mut repr.as_ref()) {
if bool::from(!point.is_identity()) {
return point;
}
}
}
}
/// Generators for eVRF proof.
#[derive(Clone, Debug)]
pub struct EvrfGenerators<C: EvrfCurve>(pub(crate) Generators<C>);
impl<C: EvrfCurve> EvrfGenerators<C> {
/// Create a new set of generators.
pub fn new(max_threshold: u16, max_participants: u16) -> EvrfGenerators<C> {
let g = C::generator();
let mut rng = ChaCha20Rng::from_seed(Blake2s256::digest(g.to_bytes()).into());
let h = sample_point::<C>(&mut rng);
let (_, generators) =
Evrf::<C>::muls_and_generators_to_use(max_threshold.into(), max_participants.into());
let mut g_bold = vec![];
let mut h_bold = vec![];
for _ in 0 .. generators {
g_bold.push(sample_point::<C>(&mut rng));
h_bold.push(sample_point::<C>(&mut rng));
}
Self(Generators::new(g, h, g_bold, h_bold).unwrap())
}
}
/// The result of proving for an eVRF.
pub(crate) struct EvrfProveResult<C: Ciphersuite> {
/// The coefficients for use in the DKG.
pub(crate) coefficients: Vec<Zeroizing<C::F>>,
/// The masks to encrypt secret shares with.
pub(crate) encryption_masks: Vec<Zeroizing<C::F>>,
/// The proof itself.
pub(crate) proof: Vec<u8>,
}
/// The result of verifying an eVRF.
pub(crate) struct EvrfVerifyResult<C: EvrfCurve> {
/// The commitments to the coefficients for use in the DKG.
pub(crate) coefficients: Vec<C::G>,
/// The ephemeral public keys to perform ECDHs with
pub(crate) ecdh_keys: Vec<[<C::EmbeddedCurve as Ciphersuite>::G; 2]>,
/// The commitments to the masks used to encrypt secret shares with.
pub(crate) encryption_commitments: Vec<C::G>,
}
impl<C: EvrfCurve> fmt::Debug for EvrfVerifyResult<C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("EvrfVerifyResult").finish_non_exhaustive()
}
}
/// A struct to prove/verify eVRFs with.
pub(crate) struct Evrf<C: EvrfCurve>(PhantomData<C>);
impl<C: EvrfCurve> Evrf<C> {
// Sample uniform points (via rejection-sampling) on the embedded elliptic curve
fn transcript_to_points(
seed: [u8; 32],
coefficients: usize,
) -> Vec<<C::EmbeddedCurve as Ciphersuite>::G> {
// We need to do two Diffie-Hellman's per coefficient in order to achieve an unbiased result
let quantity = 2 * coefficients;
let mut rng = ChaCha20Rng::from_seed(seed);
let mut res = Vec::with_capacity(quantity);
for _ in 0 .. quantity {
res.push(sample_point::<C::EmbeddedCurve>(&mut rng));
}
res
}
/// Read a Variable from a theoretical vector commitment tape
fn read_one_from_tape(generators_to_use: usize, start: &mut usize) -> Variable {
// Each commitment has twice as many variables as generators in use
let commitment = *start / (2 * generators_to_use);
// The index will be less than the amount of generators in use, as half are left and half are
// right
let index = *start % generators_to_use;
let res = if (*start / generators_to_use) % 2 == 0 {
Variable::CG { commitment, index }
} else {
Variable::CH { commitment, index }
};
*start += 1;
res
}
/// Read a set of variables from a theoretical vector commitment tape
fn read_from_tape<N: ArrayLength>(
generators_to_use: usize,
start: &mut usize,
) -> GenericArray<Variable, N> {
let mut buf = Vec::with_capacity(N::USIZE);
for _ in 0 .. N::USIZE {
buf.push(Self::read_one_from_tape(generators_to_use, start));
}
GenericArray::from_slice(&buf).clone()
}
/// Read `PointWithDlog`s, which share a discrete logarithm, from the theoretical vector
/// commitment tape.
fn point_with_dlogs(
start: &mut usize,
quantity: usize,
generators_to_use: usize,
) -> Vec<PointWithDlog<C::EmbeddedCurveParameters>> {
// We define a serialized tape of the discrete logarithm, then for each divisor/point, we push:
// zero, x**i, y x**i, y, x_coord, y_coord
// We then chunk that into vector commitments
// Here, we take the assumed layout and generate the expected `Variable`s for this layout
let dlog = Self::read_from_tape(generators_to_use, start);
let mut res = Vec::with_capacity(quantity);
let mut read_point_with_dlog = || {
let zero = Self::read_one_from_tape(generators_to_use, start);
let x_from_power_of_2 = Self::read_from_tape(generators_to_use, start);
let yx = Self::read_from_tape(generators_to_use, start);
let y = Self::read_one_from_tape(generators_to_use, start);
let divisor = Divisor { zero, x_from_power_of_2, yx, y };
let point = (
Self::read_one_from_tape(generators_to_use, start),
Self::read_one_from_tape(generators_to_use, start),
);
res.push(PointWithDlog { dlog: dlog.clone(), divisor, point });
};
for _ in 0 .. quantity {
read_point_with_dlog();
}
res
}
fn muls_and_generators_to_use(coefficients: usize, ecdhs: usize) -> (usize, usize) {
const MULS_PER_DH: usize = 7;
// 1 DH to prove the discrete logarithm corresponds to the eVRF public key
// 2 DHs per generated coefficient
// 2 DHs per generated ECDH
let expected_muls = MULS_PER_DH * (1 + (2 * coefficients) + (2 * 2 * ecdhs));
let generators_to_use = {
let mut padded_pow_of_2 = 1;
while padded_pow_of_2 < expected_muls {
padded_pow_of_2 <<= 1;
}
// This may as small as 16, which would create an excessive amount of vector commitments
// We set a floor of 1024 rows for bandwidth reasons
padded_pow_of_2.max(1024)
};
(expected_muls, generators_to_use)
}
fn circuit(
curve_spec: &CurveSpec<C::F>,
evrf_public_key: (C::F, C::F),
coefficients: usize,
ecdh_commitments: &[[(C::F, C::F); 2]],
generator_tables: &[GeneratorTable<C::F, C::EmbeddedCurveParameters>],
circuit: &mut Circuit<C>,
transcript: &mut impl Transcript,
) {
let (expected_muls, generators_to_use) =
Self::muls_and_generators_to_use(coefficients, ecdh_commitments.len());
let (challenge, challenged_generators) =
circuit.discrete_log_challenge(transcript, curve_spec, generator_tables);
debug_assert_eq!(challenged_generators.len(), 1 + (2 * coefficients) + ecdh_commitments.len());
// The generators tables/challenged generators are expected to have the following layouts
// G, coefficients * [A, B], ecdhs * [P]
#[allow(non_snake_case)]
let challenged_G = &challenged_generators[0];
// Execute the circuit for the coefficients
let mut tape_pos = 0;
{
let mut point_with_dlogs =
Self::point_with_dlogs(&mut tape_pos, 1 + (2 * coefficients), generators_to_use)
.into_iter();
// Verify the discrete logarithm is in the fact the discrete logarithm of the eVRF public key
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_G,
);
circuit.equality(LinComb::from(point.x()), &LinComb::empty().constant(evrf_public_key.0));
circuit.equality(LinComb::from(point.y()), &LinComb::empty().constant(evrf_public_key.1));
// Verify the DLog claims against the sampled points
for (i, pair) in challenged_generators[1 ..].chunks(2).take(coefficients).enumerate() {
let mut lincomb = LinComb::empty();
debug_assert_eq!(pair.len(), 2);
for challenged_generator in pair {
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_generator,
);
// For each point in this pair, add its x coordinate to a lincomb
lincomb = lincomb.term(C::F::ONE, point.x());
}
// Constrain the sum of the two x coordinates to be equal to the value in the Pedersen
// commitment
circuit.equality(lincomb, &LinComb::from(Variable::V(i)));
}
debug_assert!(point_with_dlogs.next().is_none());
}
// Now execute the circuit for the ECDHs
let mut challenged_generators = challenged_generators.iter().skip(1 + (2 * coefficients));
for (i, ecdh) in ecdh_commitments.iter().enumerate() {
let challenged_generator = challenged_generators.next().unwrap();
let mut lincomb = LinComb::empty();
for ecdh in ecdh {
let mut point_with_dlogs =
Self::point_with_dlogs(&mut tape_pos, 2, generators_to_use).into_iter();
// One proof of the ECDH secret * G for the commitment published
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_G,
);
circuit.equality(LinComb::from(point.x()), &LinComb::empty().constant(ecdh.0));
circuit.equality(LinComb::from(point.y()), &LinComb::empty().constant(ecdh.1));
// One proof of the ECDH secret * P for the ECDH
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_generator,
);
// For each point in this pair, add its x coordinate to a lincomb
lincomb = lincomb.term(C::F::ONE, point.x());
}
// Constrain the sum of the two x coordinates to be equal to the value in the Pedersen
// commitment
circuit.equality(lincomb, &LinComb::from(Variable::V(coefficients + i)));
}
debug_assert_eq!(expected_muls, circuit.muls());
debug_assert!(challenged_generators.next().is_none());
}
/// Convert a scalar to a sequence of coefficients for the polynomial 2**i, where the sum of the
/// coefficients is F::NUM_BITS.
///
/// Despite the name, the returned coefficients are not guaranteed to be bits (0 or 1).
///
/// This scalar will presumably be used in a discrete log proof. That requires calculating a
/// divisor which is variable time to the amount of points interpolated. Since the amount of
/// points interpolated is equal to the sum of the coefficients in the polynomial, we need all
/// scalars to have a constant sum of their coefficients (instead of one variable to its bits).
///
/// We achieve this by finding the highest non-0 coefficient, decrementing it, and increasing the
/// immediately less significant coefficient by 2. This increases the sum of the coefficients by
/// 1 (-1+2=1).
fn scalar_to_bits(scalar: &<C::EmbeddedCurve as Ciphersuite>::F) -> Vec<u64> {
let num_bits = u64::from(<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::F::NUM_BITS);
// Obtain the bits of the private key
let num_bits_usize = usize::try_from(num_bits).unwrap();
let mut decomposition = vec![0; num_bits_usize];
for (i, bit) in scalar.to_le_bits().into_iter().take(num_bits_usize).enumerate() {
let bit = u64::from(u8::from(bit));
decomposition[i] = bit;
}
// The following algorithm only works if the value of the scalar exceeds num_bits
// If it isn't, we increase it by the modulus such that it does exceed num_bits
{
let mut less_than_num_bits = Choice::from(0);
for i in 0 .. num_bits {
less_than_num_bits |= scalar.ct_eq(&<C::EmbeddedCurve as Ciphersuite>::F::from(i));
}
let mut decomposition_of_modulus = vec![0; num_bits_usize];
// Decompose negative one
for (i, bit) in (-<C::EmbeddedCurve as Ciphersuite>::F::ONE)
.to_le_bits()
.into_iter()
.take(num_bits_usize)
.enumerate()
{
let bit = u64::from(u8::from(bit));
decomposition_of_modulus[i] = bit;
}
// Increment it by one
decomposition_of_modulus[0] += 1;
// Add the decomposition onto the decomposition of the modulus
for i in 0 .. num_bits_usize {
let new_decomposition = <_>::conditional_select(
&decomposition[i],
&(decomposition[i] + decomposition_of_modulus[i]),
less_than_num_bits,
);
decomposition[i] = new_decomposition;
}
}
// Calculcate the sum of the coefficients
let mut sum_of_coefficients: u64 = 0;
for decomposition in &decomposition {
sum_of_coefficients += *decomposition;
}
/*
Now, because we added a log2(k)-bit number to a k-bit number, we may have our sum of
coefficients be *too high*. We attempt to reduce the sum of the coefficients accordingly.
This algorithm is guaranteed to complete as expected. Take the sequence `222`. `222` becomes
`032` becomes `013`. Even if the next coefficient in the sequence is `2`, the third
coefficient will be reduced once and the next coefficient (`2`, increased to `3`) will only
be eligible for reduction once. This demonstrates, even for a worst case of log2(k) `2`s
followed by `1`s (as possible if the modulus is a Mersenne prime), the log2(k) `2`s can be
reduced as necessary so long as there is a single coefficient after (requiring the entire
sequence be at least of length log2(k) + 1). For a 2-bit number, log2(k) + 1 == 2, so this
holds for any odd prime field.
To fully type out the demonstration for the Mersenne prime 3, with scalar to encode 1 (the
highest value less than the number of bits):
10 - Little-endian bits of 1
21 - Little-endian bits of 1, plus the modulus
02 - After one reduction, where the sum of the coefficients does in fact equal 2 (the target)
*/
{
let mut log2_num_bits = 0;
while (1 << log2_num_bits) < num_bits {
log2_num_bits += 1;
}
for _ in 0 .. log2_num_bits {
// If the sum of coefficients is the amount of bits, we're done
let mut done = sum_of_coefficients.ct_eq(&num_bits);
for i in 0 .. (num_bits_usize - 1) {
let should_act = (!done) & decomposition[i].ct_gt(&1);
// Subtract 2 from this coefficient
let amount_to_sub = <_>::conditional_select(&0, &2, should_act);
decomposition[i] -= amount_to_sub;
// Add 1 to the next coefficient
let amount_to_add = <_>::conditional_select(&0, &1, should_act);
decomposition[i + 1] += amount_to_add;
// Also update the sum of coefficients
sum_of_coefficients -= <_>::conditional_select(&0, &1, should_act);
// If we updated the coefficients this loop iter, we're done for this loop iter
done |= should_act;
}
}
}
for _ in 0 .. num_bits {
// If the sum of coefficients is the amount of bits, we're done
let mut done = sum_of_coefficients.ct_eq(&num_bits);
// Find the highest coefficient currently non-zero
for i in (1 .. decomposition.len()).rev() {
// If this is non-zero, we should decrement this coefficient if we haven't already
// decremented a coefficient this round
let is_non_zero = !(0.ct_eq(&decomposition[i]));
let should_act = (!done) & is_non_zero;
// Update this coefficient and the prior coefficient
let amount_to_sub = <_>::conditional_select(&0, &1, should_act);
decomposition[i] -= amount_to_sub;
let amount_to_add = <_>::conditional_select(&0, &2, should_act);
// i must be at least 1, so i - 1 will be at least 0 (meaning it's safe to index with)
decomposition[i - 1] += amount_to_add;
// Also update the sum of coefficients
sum_of_coefficients += <_>::conditional_select(&0, &1, should_act);
// If we updated the coefficients this loop iter, we're done for this loop iter
done |= should_act;
}
}
debug_assert!(bool::from(decomposition.iter().sum::<u64>().ct_eq(&num_bits)));
decomposition
}
/// Prove a point on an elliptic curve had its discrete logarithm generated via an eVRF.
pub(crate) fn prove(
rng: &mut (impl RngCore + CryptoRng),
generators: &Generators<C>,
transcript: [u8; 32],
coefficients: usize,
ecdh_public_keys: &[<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G],
evrf_private_key: &Zeroizing<<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::F>,
) -> Result<EvrfProveResult<C>, AcError> {
let curve_spec = CurveSpec {
a: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::a(),
b: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::b(),
};
// A tape of the discrete logarithm, then [zero, x**i, y x**i, y, x_coord, y_coord]
let mut vector_commitment_tape = vec![];
let mut generator_tables = Vec::with_capacity(1 + (2 * coefficients) + ecdh_public_keys.len());
// A function to calculate a divisor and push it onto the tape
// This defines a vec, divisor_points, outside of the fn to reuse its allocation
let mut divisor_points =
Vec::with_capacity((<C::EmbeddedCurve as Ciphersuite>::F::NUM_BITS as usize) + 1);
let mut divisor =
|vector_commitment_tape: &mut Vec<_>,
dlog: &[u64],
push_generator: bool,
generator: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G,
dh: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G| {
if push_generator {
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(generator).unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
{
let mut generator = generator;
for coefficient in dlog {
let mut coefficient = *coefficient;
while coefficient != 0 {
coefficient -= 1;
divisor_points.push(generator);
}
generator = generator.double();
}
debug_assert_eq!(
dlog.iter().sum::<u64>(),
u64::from(<C::EmbeddedCurve as Ciphersuite>::F::NUM_BITS)
);
}
divisor_points.push(-dh);
let mut divisor = new_divisor(&divisor_points).unwrap().normalize_x_coefficient();
divisor_points.zeroize();
vector_commitment_tape.push(divisor.zero_coefficient);
for coefficient in divisor.x_coefficients.iter().skip(1) {
vector_commitment_tape.push(*coefficient);
}
for _ in divisor.x_coefficients.len() ..
<C::EmbeddedCurveParameters as DiscreteLogParameters>::XCoefficientsMinusOne::USIZE
{
vector_commitment_tape.push(<C as Ciphersuite>::F::ZERO);
}
for coefficient in divisor.yx_coefficients.first().unwrap_or(&vec![]) {
vector_commitment_tape.push(*coefficient);
}
for _ in divisor.yx_coefficients.first().unwrap_or(&vec![]).len() ..
<C::EmbeddedCurveParameters as DiscreteLogParameters>::YxCoefficients::USIZE
{
vector_commitment_tape.push(<C as Ciphersuite>::F::ZERO);
}
vector_commitment_tape
.push(divisor.y_coefficients.first().copied().unwrap_or(<C as Ciphersuite>::F::ZERO));
divisor.zeroize();
drop(divisor);
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(dh).unwrap();
vector_commitment_tape.push(x);
vector_commitment_tape.push(y);
(x, y)
};
// Start with the coefficients
let evrf_public_key;
let mut actual_coefficients = Vec::with_capacity(coefficients);
{
let mut dlog = Self::scalar_to_bits(evrf_private_key);
let points = Self::transcript_to_points(transcript, coefficients);
// Start by pushing the discrete logarithm onto the tape
for coefficient in &dlog {
vector_commitment_tape.push(<_>::from(*coefficient));
}
// Push a divisor for proving that we're using the correct scalar
evrf_public_key = divisor(
&mut vector_commitment_tape,
&dlog,
true,
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator(),
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator() * evrf_private_key.deref(),
);
// Push a divisor for each point we use in the eVRF
for pair in points.chunks(2) {
let mut res = Zeroizing::new(C::F::ZERO);
for point in pair {
let (dh_x, _) = divisor(
&mut vector_commitment_tape,
&dlog,
true,
*point,
*point * evrf_private_key.deref(),
);
*res += dh_x;
}
actual_coefficients.push(res);
}
debug_assert_eq!(actual_coefficients.len(), coefficients);
dlog.zeroize();
}
// Now do the ECDHs for the encryption
let mut encryption_masks = Vec::with_capacity(ecdh_public_keys.len());
let mut ecdh_commitments = Vec::with_capacity(2 * ecdh_public_keys.len());
let mut ecdh_commitments_xy = Vec::with_capacity(ecdh_public_keys.len());
for ecdh_public_key in ecdh_public_keys {
ecdh_commitments_xy.push([(C::F::ZERO, C::F::ZERO); 2]);
let mut res = Zeroizing::new(C::F::ZERO);
for j in 0 .. 2 {
let mut ecdh_private_key;
loop {
ecdh_private_key = <C::EmbeddedCurve as Ciphersuite>::F::random(&mut *rng);
// Generate a non-0 ECDH private key, as necessary to not produce an identity output
// Identity isn't representable with the divisors, hence the explicit effort
if bool::from(!ecdh_private_key.is_zero()) {
break;
}
}
let mut dlog = Self::scalar_to_bits(&ecdh_private_key);
let ecdh_commitment = <C::EmbeddedCurve as Ciphersuite>::generator() * ecdh_private_key;
ecdh_commitments.push(ecdh_commitment);
ecdh_commitments_xy.last_mut().unwrap()[j] =
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_commitment).unwrap();
// Start by pushing the discrete logarithm onto the tape
for coefficient in &dlog {
vector_commitment_tape.push(<_>::from(*coefficient));
}
// Push a divisor for proving that we're using the correct scalar for the commitment
divisor(
&mut vector_commitment_tape,
&dlog,
false,
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator(),
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator() * ecdh_private_key,
);
// Push a divisor for the key we're performing the ECDH with
let (dh_x, _) = divisor(
&mut vector_commitment_tape,
&dlog,
j == 0,
*ecdh_public_key,
*ecdh_public_key * ecdh_private_key,
);
*res += dh_x;
ecdh_private_key.zeroize();
dlog.zeroize();
}
encryption_masks.push(res);
}
debug_assert_eq!(encryption_masks.len(), ecdh_public_keys.len());
// Now that we have the vector commitment tape, chunk it
let (_, generators_to_use) =
Self::muls_and_generators_to_use(coefficients, ecdh_public_keys.len());
let mut vector_commitments =
Vec::with_capacity(vector_commitment_tape.len().div_ceil(2 * generators_to_use));
for chunk in vector_commitment_tape.chunks(2 * generators_to_use) {
let g_values = chunk[.. generators_to_use.min(chunk.len())].to_vec().into();
let h_values = chunk[generators_to_use.min(chunk.len()) ..].to_vec().into();
vector_commitments.push(PedersenVectorCommitment {
g_values,
h_values,
mask: C::F::random(&mut *rng),
});
}
vector_commitment_tape.zeroize();
drop(vector_commitment_tape);
let mut commitments = Vec::with_capacity(coefficients + ecdh_public_keys.len());
for coefficient in &actual_coefficients {
commitments.push(PedersenCommitment { value: **coefficient, mask: C::F::random(&mut *rng) });
}
for enc_mask in &encryption_masks {
commitments.push(PedersenCommitment { value: **enc_mask, mask: C::F::random(&mut *rng) });
}
let mut transcript = ProverTranscript::new(transcript);
let commited_commitments = transcript.write_commitments(
vector_commitments
.iter()
.map(|commitment| {
commitment
.commit(generators.g_bold_slice(), generators.h_bold_slice(), generators.h())
.ok_or(AcError::NotEnoughGenerators)
})
.collect::<Result<_, _>>()?,
commitments
.iter()
.map(|commitment| commitment.commit(generators.g(), generators.h()))
.collect(),
);
for ecdh_commitment in ecdh_commitments {
transcript.push_point(ecdh_commitment);
}
let mut circuit = Circuit::prove(vector_commitments, commitments.clone());
Self::circuit(
&curve_spec,
evrf_public_key,
coefficients,
&ecdh_commitments_xy,
&generator_tables,
&mut circuit,
&mut transcript,
);
let (statement, Some(witness)) = circuit
.statement(
generators.reduce(generators_to_use).ok_or(AcError::NotEnoughGenerators)?,
commited_commitments,
)
.unwrap()
else {
panic!("proving yet wasn't yielded the witness");
};
statement.prove(&mut *rng, &mut transcript, witness).unwrap();
// Push the reveal onto the transcript
for commitment in &commitments {
transcript.push_point(generators.g() * commitment.value);
}
// Define a weight to aggregate the commitments with
let mut agg_weights = Vec::with_capacity(commitments.len());
agg_weights.push(C::F::ONE);
while agg_weights.len() < commitments.len() {
agg_weights.push(transcript.challenge::<C::F>());
}
let mut x = commitments
.iter()
.zip(&agg_weights)
.map(|(commitment, weight)| commitment.mask * *weight)
.sum::<C::F>();
// Do a Schnorr PoK for the randomness of the aggregated Pedersen commitment
let mut r = C::F::random(&mut *rng);
transcript.push_point(generators.h() * r);
let c = transcript.challenge::<C::F>();
transcript.push_scalar(r + (c * x));
r.zeroize();
x.zeroize();
Ok(EvrfProveResult {
coefficients: actual_coefficients,
encryption_masks,
proof: transcript.complete(),
})
}
/// Verify an eVRF proof, returning the commitments output.
#[allow(clippy::too_many_arguments)]
pub(crate) fn verify(
rng: &mut (impl RngCore + CryptoRng),
generators: &Generators<C>,
verifier: &mut BatchVerifier<C>,
transcript: [u8; 32],
coefficients: usize,
ecdh_public_keys: &[<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G],
evrf_public_key: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G,
proof: &[u8],
) -> Result<EvrfVerifyResult<C>, ()> {
let curve_spec = CurveSpec {
a: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::a(),
b: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::b(),
};
let mut generator_tables = Vec::with_capacity(1 + (2 * coefficients) + ecdh_public_keys.len());
{
let (x, y) =
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(<C::EmbeddedCurve as Ciphersuite>::generator())
.unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
let points = Self::transcript_to_points(transcript, coefficients);
for generator in points {
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(generator).unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
for generator in ecdh_public_keys {
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(*generator).unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
let (_, generators_to_use) =
Self::muls_and_generators_to_use(coefficients, ecdh_public_keys.len());
let mut transcript = VerifierTranscript::new(transcript, proof);
let dlog_len = <C::EmbeddedCurveParameters as DiscreteLogParameters>::ScalarBits::USIZE;
let divisor_len = 1 +
<C::EmbeddedCurveParameters as DiscreteLogParameters>::XCoefficientsMinusOne::USIZE +
<C::EmbeddedCurveParameters as DiscreteLogParameters>::YxCoefficients::USIZE +
1;
let dlog_proof_len = divisor_len + 2;
let coeffs_vc_variables = dlog_len + ((1 + (2 * coefficients)) * dlog_proof_len);
let ecdhs_vc_variables = ((2 * ecdh_public_keys.len()) * dlog_len) +
((2 * 2 * ecdh_public_keys.len()) * dlog_proof_len);
let vcs = (coeffs_vc_variables + ecdhs_vc_variables).div_ceil(2 * generators_to_use);
let all_commitments =
transcript.read_commitments(vcs, coefficients + ecdh_public_keys.len()).map_err(|_| ())?;
let commitments = all_commitments.V().to_vec();
let mut ecdh_keys = Vec::with_capacity(ecdh_public_keys.len());
let mut ecdh_keys_xy = Vec::with_capacity(ecdh_public_keys.len());
for _ in 0 .. ecdh_public_keys.len() {
let ecdh_keys_i = [
transcript.read_point::<C::EmbeddedCurve>().map_err(|_| ())?,
transcript.read_point::<C::EmbeddedCurve>().map_err(|_| ())?,
];
ecdh_keys.push(ecdh_keys_i);
// This bans zero ECDH keys
ecdh_keys_xy.push([
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_keys_i[0]).ok_or(())?,
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_keys_i[1]).ok_or(())?,
]);
}
let mut circuit = Circuit::verify();
Self::circuit(
&curve_spec,
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(evrf_public_key).ok_or(())?,
coefficients,
&ecdh_keys_xy,
&generator_tables,
&mut circuit,
&mut transcript,
);
let (statement, None) =
circuit.statement(generators.reduce(generators_to_use).ok_or(())?, all_commitments).unwrap()
else {
panic!("verifying yet was yielded a witness");
};
statement.verify(rng, verifier, &mut transcript).map_err(|_| ())?;
// Read the openings for the commitments
let mut openings = Vec::with_capacity(commitments.len());
for _ in 0 .. commitments.len() {
openings.push(transcript.read_point::<C>().map_err(|_| ())?);
}
// Verify the openings of the commitments
let mut agg_weights = Vec::with_capacity(commitments.len());
agg_weights.push(C::F::ONE);
while agg_weights.len() < commitments.len() {
agg_weights.push(transcript.challenge::<C::F>());
}
let sum_points =
openings.iter().zip(&agg_weights).map(|(point, weight)| *point * *weight).sum::<C::G>();
let sum_commitments =
commitments.into_iter().zip(agg_weights).map(|(point, weight)| point * weight).sum::<C::G>();
#[allow(non_snake_case)]
let A = sum_commitments - sum_points;
#[allow(non_snake_case)]
let R = transcript.read_point::<C>().map_err(|_| ())?;
let c = transcript.challenge::<C::F>();
let s = transcript.read_scalar::<C>().map_err(|_| ())?;
// Doesn't batch verify this as we can't access the internals of the GBP batch verifier
if (R + (A * c)) != (generators.h() * s) {
Err(())?;
}
if !transcript.complete().is_empty() {
Err(())?
};
let encryption_commitments = openings[coefficients ..].to_vec();
let coefficients = openings[.. coefficients].to_vec();
Ok(EvrfVerifyResult { coefficients, ecdh_keys, encryption_commitments })
}
}