serai/processor/src/tests/cosigner.rs

129 lines
3.5 KiB
Rust
Raw Normal View History

Add a cosigning protocol to ensure finalizations are unique (#433) * Add a function to deterministically decide which Serai blocks should be co-signed Has a 5 minute latency between co-signs, also used as the maximal latency before a co-sign is started. * Get all active tributaries we're in at a specific block * Add and route CosignSubstrateBlock, a new provided TX * Split queued cosigns per network * Rename BatchSignId to SubstrateSignId * Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it * Handle the CosignSubstrateBlock provided TX * Revert substrate_signer.rs to develop (and patch to still work) Due to SubstrateSigner moving when the prior multisig closes, yet cosigning occurring with the most recent key, a single SubstrateSigner can be reused. We could manage multiple SubstrateSigners, yet considering the much lower specifications for cosigning, I'd rather treat it distinctly. * Route cosigning through the processor * Add note to rename SubstrateSigner post-PR I don't want to do so now in order to preserve the diff's clarity. * Implement cosign evaluation into the coordinator * Get tests to compile * Bug fixes, mark blocks without cosigners available as cosigned * Correct the ID Batch preprocesses are saved under, add log statements * Create a dedicated function to handle cosigns * Correct the flow around Batch verification/queueing Verifying `Batch`s could stall when a `Batch` was signed before its predecessors/before the block it's contained in was cosigned (the latter being inevitable as we can't sign a block containing a signed batch before signing the batch). Now, Batch verification happens on a distinct async task in order to not block the handling of processor messages. This task is the sole caller of verify in order to ensure last_verified_batch isn't unexpectedly mutated. When the processor message handler needs to access it, or needs to queue a Batch, it associates the DB TXN with a lock preventing the other task from doing so. This lock, as currently implemented, is a poor and inefficient design. It should be modified to the pattern used for cosign management. Additionally, a new primitive of a DB-backed channel may be immensely valuable. Fixes a standing potential deadlock and a deadlock introduced with the cosigning protocol. * Working full-stack tests After the last commit, this only required extending a timeout. * Replace "co-sign" with "cosign" to make finding text easier * Update the coordinator tests to support cosigning * Inline prior_batch calculation to prevent panic on rotation Noticed when doing a final review of the branch.
2023-11-15 21:57:21 +00:00
use std::collections::HashMap;
use rand_core::{RngCore, OsRng};
use ciphersuite::group::GroupEncoding;
use frost::{
curve::Ristretto,
Participant,
dkg::tests::{key_gen, clone_without},
};
use sp_application_crypto::{RuntimePublic, sr25519::Public};
use serai_db::{DbTxn, Db, MemDb};
use serai_client::{primitives::*, validator_sets::primitives::Session};
Add a cosigning protocol to ensure finalizations are unique (#433) * Add a function to deterministically decide which Serai blocks should be co-signed Has a 5 minute latency between co-signs, also used as the maximal latency before a co-sign is started. * Get all active tributaries we're in at a specific block * Add and route CosignSubstrateBlock, a new provided TX * Split queued cosigns per network * Rename BatchSignId to SubstrateSignId * Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it * Handle the CosignSubstrateBlock provided TX * Revert substrate_signer.rs to develop (and patch to still work) Due to SubstrateSigner moving when the prior multisig closes, yet cosigning occurring with the most recent key, a single SubstrateSigner can be reused. We could manage multiple SubstrateSigners, yet considering the much lower specifications for cosigning, I'd rather treat it distinctly. * Route cosigning through the processor * Add note to rename SubstrateSigner post-PR I don't want to do so now in order to preserve the diff's clarity. * Implement cosign evaluation into the coordinator * Get tests to compile * Bug fixes, mark blocks without cosigners available as cosigned * Correct the ID Batch preprocesses are saved under, add log statements * Create a dedicated function to handle cosigns * Correct the flow around Batch verification/queueing Verifying `Batch`s could stall when a `Batch` was signed before its predecessors/before the block it's contained in was cosigned (the latter being inevitable as we can't sign a block containing a signed batch before signing the batch). Now, Batch verification happens on a distinct async task in order to not block the handling of processor messages. This task is the sole caller of verify in order to ensure last_verified_batch isn't unexpectedly mutated. When the processor message handler needs to access it, or needs to queue a Batch, it associates the DB TXN with a lock preventing the other task from doing so. This lock, as currently implemented, is a poor and inefficient design. It should be modified to the pattern used for cosign management. Additionally, a new primitive of a DB-backed channel may be immensely valuable. Fixes a standing potential deadlock and a deadlock introduced with the cosigning protocol. * Working full-stack tests After the last commit, this only required extending a timeout. * Replace "co-sign" with "cosign" to make finding text easier * Update the coordinator tests to support cosigning * Inline prior_batch calculation to prevent panic on rotation Noticed when doing a final review of the branch.
2023-11-15 21:57:21 +00:00
use messages::coordinator::*;
use crate::cosigner::Cosigner;
#[test]
fn test_cosigner() {
Add a cosigning protocol to ensure finalizations are unique (#433) * Add a function to deterministically decide which Serai blocks should be co-signed Has a 5 minute latency between co-signs, also used as the maximal latency before a co-sign is started. * Get all active tributaries we're in at a specific block * Add and route CosignSubstrateBlock, a new provided TX * Split queued cosigns per network * Rename BatchSignId to SubstrateSignId * Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it * Handle the CosignSubstrateBlock provided TX * Revert substrate_signer.rs to develop (and patch to still work) Due to SubstrateSigner moving when the prior multisig closes, yet cosigning occurring with the most recent key, a single SubstrateSigner can be reused. We could manage multiple SubstrateSigners, yet considering the much lower specifications for cosigning, I'd rather treat it distinctly. * Route cosigning through the processor * Add note to rename SubstrateSigner post-PR I don't want to do so now in order to preserve the diff's clarity. * Implement cosign evaluation into the coordinator * Get tests to compile * Bug fixes, mark blocks without cosigners available as cosigned * Correct the ID Batch preprocesses are saved under, add log statements * Create a dedicated function to handle cosigns * Correct the flow around Batch verification/queueing Verifying `Batch`s could stall when a `Batch` was signed before its predecessors/before the block it's contained in was cosigned (the latter being inevitable as we can't sign a block containing a signed batch before signing the batch). Now, Batch verification happens on a distinct async task in order to not block the handling of processor messages. This task is the sole caller of verify in order to ensure last_verified_batch isn't unexpectedly mutated. When the processor message handler needs to access it, or needs to queue a Batch, it associates the DB TXN with a lock preventing the other task from doing so. This lock, as currently implemented, is a poor and inefficient design. It should be modified to the pattern used for cosign management. Additionally, a new primitive of a DB-backed channel may be immensely valuable. Fixes a standing potential deadlock and a deadlock introduced with the cosigning protocol. * Working full-stack tests After the last commit, this only required extending a timeout. * Replace "co-sign" with "cosign" to make finding text easier * Update the coordinator tests to support cosigning * Inline prior_batch calculation to prevent panic on rotation Noticed when doing a final review of the branch.
2023-11-15 21:57:21 +00:00
let keys = key_gen::<_, Ristretto>(&mut OsRng);
let participant_one = Participant::new(1).unwrap();
2023-11-16 01:23:19 +00:00
let block_number = OsRng.next_u64();
Add a cosigning protocol to ensure finalizations are unique (#433) * Add a function to deterministically decide which Serai blocks should be co-signed Has a 5 minute latency between co-signs, also used as the maximal latency before a co-sign is started. * Get all active tributaries we're in at a specific block * Add and route CosignSubstrateBlock, a new provided TX * Split queued cosigns per network * Rename BatchSignId to SubstrateSignId * Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it * Handle the CosignSubstrateBlock provided TX * Revert substrate_signer.rs to develop (and patch to still work) Due to SubstrateSigner moving when the prior multisig closes, yet cosigning occurring with the most recent key, a single SubstrateSigner can be reused. We could manage multiple SubstrateSigners, yet considering the much lower specifications for cosigning, I'd rather treat it distinctly. * Route cosigning through the processor * Add note to rename SubstrateSigner post-PR I don't want to do so now in order to preserve the diff's clarity. * Implement cosign evaluation into the coordinator * Get tests to compile * Bug fixes, mark blocks without cosigners available as cosigned * Correct the ID Batch preprocesses are saved under, add log statements * Create a dedicated function to handle cosigns * Correct the flow around Batch verification/queueing Verifying `Batch`s could stall when a `Batch` was signed before its predecessors/before the block it's contained in was cosigned (the latter being inevitable as we can't sign a block containing a signed batch before signing the batch). Now, Batch verification happens on a distinct async task in order to not block the handling of processor messages. This task is the sole caller of verify in order to ensure last_verified_batch isn't unexpectedly mutated. When the processor message handler needs to access it, or needs to queue a Batch, it associates the DB TXN with a lock preventing the other task from doing so. This lock, as currently implemented, is a poor and inefficient design. It should be modified to the pattern used for cosign management. Additionally, a new primitive of a DB-backed channel may be immensely valuable. Fixes a standing potential deadlock and a deadlock introduced with the cosigning protocol. * Working full-stack tests After the last commit, this only required extending a timeout. * Replace "co-sign" with "cosign" to make finding text easier * Update the coordinator tests to support cosigning * Inline prior_batch calculation to prevent panic on rotation Noticed when doing a final review of the branch.
2023-11-15 21:57:21 +00:00
let block = [0xaa; 32];
let actual_id = SubstrateSignId {
session: Session(0),
Add a cosigning protocol to ensure finalizations are unique (#433) * Add a function to deterministically decide which Serai blocks should be co-signed Has a 5 minute latency between co-signs, also used as the maximal latency before a co-sign is started. * Get all active tributaries we're in at a specific block * Add and route CosignSubstrateBlock, a new provided TX * Split queued cosigns per network * Rename BatchSignId to SubstrateSignId * Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it * Handle the CosignSubstrateBlock provided TX * Revert substrate_signer.rs to develop (and patch to still work) Due to SubstrateSigner moving when the prior multisig closes, yet cosigning occurring with the most recent key, a single SubstrateSigner can be reused. We could manage multiple SubstrateSigners, yet considering the much lower specifications for cosigning, I'd rather treat it distinctly. * Route cosigning through the processor * Add note to rename SubstrateSigner post-PR I don't want to do so now in order to preserve the diff's clarity. * Implement cosign evaluation into the coordinator * Get tests to compile * Bug fixes, mark blocks without cosigners available as cosigned * Correct the ID Batch preprocesses are saved under, add log statements * Create a dedicated function to handle cosigns * Correct the flow around Batch verification/queueing Verifying `Batch`s could stall when a `Batch` was signed before its predecessors/before the block it's contained in was cosigned (the latter being inevitable as we can't sign a block containing a signed batch before signing the batch). Now, Batch verification happens on a distinct async task in order to not block the handling of processor messages. This task is the sole caller of verify in order to ensure last_verified_batch isn't unexpectedly mutated. When the processor message handler needs to access it, or needs to queue a Batch, it associates the DB TXN with a lock preventing the other task from doing so. This lock, as currently implemented, is a poor and inefficient design. It should be modified to the pattern used for cosign management. Additionally, a new primitive of a DB-backed channel may be immensely valuable. Fixes a standing potential deadlock and a deadlock introduced with the cosigning protocol. * Working full-stack tests After the last commit, this only required extending a timeout. * Replace "co-sign" with "cosign" to make finding text easier * Update the coordinator tests to support cosigning * Inline prior_batch calculation to prevent panic on rotation Noticed when doing a final review of the branch.
2023-11-15 21:57:21 +00:00
id: SubstrateSignableId::CosigningSubstrateBlock(block),
attempt: (OsRng.next_u64() >> 32).try_into().unwrap(),
};
let mut signing_set = vec![];
while signing_set.len() < usize::from(keys.values().next().unwrap().params().t()) {
let candidate = Participant::new(
u16::try_from((OsRng.next_u64() % u64::try_from(keys.len()).unwrap()) + 1).unwrap(),
)
.unwrap();
if signing_set.contains(&candidate) {
continue;
}
signing_set.push(candidate);
}
let mut signers = HashMap::new();
let mut dbs = HashMap::new();
let mut preprocesses = HashMap::new();
for i in 1 ..= keys.len() {
let i = Participant::new(u16::try_from(i).unwrap()).unwrap();
let keys = keys.get(&i).unwrap().clone();
let mut db = MemDb::new();
let mut txn = db.txn();
let (signer, preprocess) =
Cosigner::new(&mut txn, Session(0), vec![keys], block_number, block, actual_id.attempt)
.unwrap();
Add a cosigning protocol to ensure finalizations are unique (#433) * Add a function to deterministically decide which Serai blocks should be co-signed Has a 5 minute latency between co-signs, also used as the maximal latency before a co-sign is started. * Get all active tributaries we're in at a specific block * Add and route CosignSubstrateBlock, a new provided TX * Split queued cosigns per network * Rename BatchSignId to SubstrateSignId * Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it * Handle the CosignSubstrateBlock provided TX * Revert substrate_signer.rs to develop (and patch to still work) Due to SubstrateSigner moving when the prior multisig closes, yet cosigning occurring with the most recent key, a single SubstrateSigner can be reused. We could manage multiple SubstrateSigners, yet considering the much lower specifications for cosigning, I'd rather treat it distinctly. * Route cosigning through the processor * Add note to rename SubstrateSigner post-PR I don't want to do so now in order to preserve the diff's clarity. * Implement cosign evaluation into the coordinator * Get tests to compile * Bug fixes, mark blocks without cosigners available as cosigned * Correct the ID Batch preprocesses are saved under, add log statements * Create a dedicated function to handle cosigns * Correct the flow around Batch verification/queueing Verifying `Batch`s could stall when a `Batch` was signed before its predecessors/before the block it's contained in was cosigned (the latter being inevitable as we can't sign a block containing a signed batch before signing the batch). Now, Batch verification happens on a distinct async task in order to not block the handling of processor messages. This task is the sole caller of verify in order to ensure last_verified_batch isn't unexpectedly mutated. When the processor message handler needs to access it, or needs to queue a Batch, it associates the DB TXN with a lock preventing the other task from doing so. This lock, as currently implemented, is a poor and inefficient design. It should be modified to the pattern used for cosign management. Additionally, a new primitive of a DB-backed channel may be immensely valuable. Fixes a standing potential deadlock and a deadlock introduced with the cosigning protocol. * Working full-stack tests After the last commit, this only required extending a timeout. * Replace "co-sign" with "cosign" to make finding text easier * Update the coordinator tests to support cosigning * Inline prior_batch calculation to prevent panic on rotation Noticed when doing a final review of the branch.
2023-11-15 21:57:21 +00:00
match preprocess {
// All participants should emit a preprocess
ProcessorMessage::CosignPreprocess { id, preprocesses: mut these_preprocesses } => {
assert_eq!(id, actual_id);
assert_eq!(these_preprocesses.len(), 1);
if signing_set.contains(&i) {
preprocesses.insert(i, these_preprocesses.swap_remove(0));
}
}
_ => panic!("didn't get preprocess back"),
}
txn.commit();
signers.insert(i, signer);
dbs.insert(i, db);
}
let mut shares = HashMap::new();
for i in &signing_set {
let mut txn = dbs.get_mut(i).unwrap().txn();
match signers
.get_mut(i)
.unwrap()
.handle(
&mut txn,
CoordinatorMessage::SubstratePreprocesses {
id: actual_id.clone(),
preprocesses: clone_without(&preprocesses, i),
},
)
.unwrap()
{
ProcessorMessage::SubstrateShare { id, shares: mut these_shares } => {
assert_eq!(id, actual_id);
assert_eq!(these_shares.len(), 1);
shares.insert(*i, these_shares.swap_remove(0));
}
_ => panic!("didn't get share back"),
}
txn.commit();
}
for i in &signing_set {
let mut txn = dbs.get_mut(i).unwrap().txn();
match signers
.get_mut(i)
.unwrap()
.handle(
&mut txn,
CoordinatorMessage::SubstrateShares {
id: actual_id.clone(),
shares: clone_without(&shares, i),
},
)
.unwrap()
{
2023-11-16 01:23:19 +00:00
ProcessorMessage::CosignedBlock { block_number, block: signed_block, signature } => {
Add a cosigning protocol to ensure finalizations are unique (#433) * Add a function to deterministically decide which Serai blocks should be co-signed Has a 5 minute latency between co-signs, also used as the maximal latency before a co-sign is started. * Get all active tributaries we're in at a specific block * Add and route CosignSubstrateBlock, a new provided TX * Split queued cosigns per network * Rename BatchSignId to SubstrateSignId * Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it * Handle the CosignSubstrateBlock provided TX * Revert substrate_signer.rs to develop (and patch to still work) Due to SubstrateSigner moving when the prior multisig closes, yet cosigning occurring with the most recent key, a single SubstrateSigner can be reused. We could manage multiple SubstrateSigners, yet considering the much lower specifications for cosigning, I'd rather treat it distinctly. * Route cosigning through the processor * Add note to rename SubstrateSigner post-PR I don't want to do so now in order to preserve the diff's clarity. * Implement cosign evaluation into the coordinator * Get tests to compile * Bug fixes, mark blocks without cosigners available as cosigned * Correct the ID Batch preprocesses are saved under, add log statements * Create a dedicated function to handle cosigns * Correct the flow around Batch verification/queueing Verifying `Batch`s could stall when a `Batch` was signed before its predecessors/before the block it's contained in was cosigned (the latter being inevitable as we can't sign a block containing a signed batch before signing the batch). Now, Batch verification happens on a distinct async task in order to not block the handling of processor messages. This task is the sole caller of verify in order to ensure last_verified_batch isn't unexpectedly mutated. When the processor message handler needs to access it, or needs to queue a Batch, it associates the DB TXN with a lock preventing the other task from doing so. This lock, as currently implemented, is a poor and inefficient design. It should be modified to the pattern used for cosign management. Additionally, a new primitive of a DB-backed channel may be immensely valuable. Fixes a standing potential deadlock and a deadlock introduced with the cosigning protocol. * Working full-stack tests After the last commit, this only required extending a timeout. * Replace "co-sign" with "cosign" to make finding text easier * Update the coordinator tests to support cosigning * Inline prior_batch calculation to prevent panic on rotation Noticed when doing a final review of the branch.
2023-11-15 21:57:21 +00:00
assert_eq!(signed_block, block);
2023-11-16 01:23:19 +00:00
assert!(Public::from_raw(keys[&participant_one].group_key().to_bytes()).verify(
&cosign_block_msg(block_number, block),
&Signature(signature.try_into().unwrap())
));
Add a cosigning protocol to ensure finalizations are unique (#433) * Add a function to deterministically decide which Serai blocks should be co-signed Has a 5 minute latency between co-signs, also used as the maximal latency before a co-sign is started. * Get all active tributaries we're in at a specific block * Add and route CosignSubstrateBlock, a new provided TX * Split queued cosigns per network * Rename BatchSignId to SubstrateSignId * Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it * Handle the CosignSubstrateBlock provided TX * Revert substrate_signer.rs to develop (and patch to still work) Due to SubstrateSigner moving when the prior multisig closes, yet cosigning occurring with the most recent key, a single SubstrateSigner can be reused. We could manage multiple SubstrateSigners, yet considering the much lower specifications for cosigning, I'd rather treat it distinctly. * Route cosigning through the processor * Add note to rename SubstrateSigner post-PR I don't want to do so now in order to preserve the diff's clarity. * Implement cosign evaluation into the coordinator * Get tests to compile * Bug fixes, mark blocks without cosigners available as cosigned * Correct the ID Batch preprocesses are saved under, add log statements * Create a dedicated function to handle cosigns * Correct the flow around Batch verification/queueing Verifying `Batch`s could stall when a `Batch` was signed before its predecessors/before the block it's contained in was cosigned (the latter being inevitable as we can't sign a block containing a signed batch before signing the batch). Now, Batch verification happens on a distinct async task in order to not block the handling of processor messages. This task is the sole caller of verify in order to ensure last_verified_batch isn't unexpectedly mutated. When the processor message handler needs to access it, or needs to queue a Batch, it associates the DB TXN with a lock preventing the other task from doing so. This lock, as currently implemented, is a poor and inefficient design. It should be modified to the pattern used for cosign management. Additionally, a new primitive of a DB-backed channel may be immensely valuable. Fixes a standing potential deadlock and a deadlock introduced with the cosigning protocol. * Working full-stack tests After the last commit, this only required extending a timeout. * Replace "co-sign" with "cosign" to make finding text easier * Update the coordinator tests to support cosigning * Inline prior_batch calculation to prevent panic on rotation Noticed when doing a final review of the branch.
2023-11-15 21:57:21 +00:00
}
_ => panic!("didn't get cosigned block back"),
}
txn.commit();
}
}