serai/coins/monero/c/wrapper.cpp

129 lines
3.7 KiB
C++
Raw Normal View History

#include <mutex>
#include "device/device_default.hpp"
#include "ringct/bulletproofs.h"
#include "ringct/rctSigs.h"
2022-05-22 19:56:12 +00:00
typedef std::lock_guard<std::mutex> lock;
std::mutex rng_mutex;
2022-05-22 19:56:12 +00:00
uint8_t rng_entropy[64];
void rng(uint8_t* seed) {
2022-05-22 19:56:12 +00:00
// Set the first half to the seed
memcpy(rng_entropy, seed, 32);
2022-05-22 19:56:12 +00:00
// Set the second half to the hash of a DST to ensure a lack of collisions
crypto::cn_fast_hash("RNG_entropy_seed", 16, (char*) &rng_entropy[32]);
}
extern "C" {
void generate_random_bytes_not_thread_safe(size_t n, uint8_t* value) {
size_t written = 0;
while (written != n) {
uint8_t hash[32];
crypto::cn_fast_hash(rng_entropy, 64, (char*) hash);
// Step the RNG by setting the latter half to the most recent result
// Does not leak the RNG, even if the values are leaked (which they are expected to be) due to
// the first half remaining constant and undisclosed
memcpy(&rng_entropy[32], hash, 32);
size_t next = n - written;
if (next > 32) {
next = 32;
}
memcpy(&value[written], hash, next);
written += next;
}
}
void c_hash_to_point(uint8_t* point) {
rct::key key_point;
ge_p3 e_p3;
memcpy(key_point.bytes, point, 32);
rct::hash_to_p3(e_p3, key_point);
ge_p3_tobytes(point, &e_p3);
}
uint8_t* c_generate_bp(uint8_t* seed, uint8_t len, uint64_t* a, uint8_t* m) {
2022-05-22 19:56:12 +00:00
lock guard(rng_mutex);
rng(seed);
rct::keyV masks;
std::vector<uint64_t> amounts;
masks.resize(len);
amounts.resize(len);
for (uint8_t i = 0; i < len; i++) {
memcpy(masks[i].bytes, m + (i * 32), 32);
amounts[i] = a[i];
}
rct::Bulletproof bp = rct::bulletproof_PROVE(amounts, masks);
std::stringstream ss;
binary_archive<true> ba(ss);
::serialization::serialize(ba, bp);
uint8_t* res = (uint8_t*) calloc(2 + ss.str().size(), 1); // malloc would also work
memcpy(res + 2, ss.str().data(), ss.str().size());
res[0] = ss.str().size() >> 8;
res[1] = ss.str().size() & 255;
return res;
}
bool c_verify_bp(uint8_t* seed, uint s_len, uint8_t* s, uint8_t c_len, uint8_t* c) {
// BPs are batch verified which use RNG based challenges to ensure individual integrity
// That's why this must also have control over RNG, to prevent interrupting multisig signing
// while not using known seeds. Considering this doesn't actually define a batch,
// and it's only verifying a single BP, it'd probably be fine, but...
2022-05-22 19:56:12 +00:00
lock guard(rng_mutex);
rng(seed);
rct::Bulletproof bp;
std::stringstream ss;
std::string str;
str.assign((char*) s, (size_t) s_len);
ss << str;
binary_archive<false> ba(ss);
::serialization::serialize(ba, bp);
if (!ss.good()) {
return false;
}
bp.V.resize(c_len);
for (uint8_t i = 0; i < c_len; i++) {
memcpy(bp.V[i].bytes, &c[i * 32], 32);
}
try { return rct::bulletproof_VERIFY(bp); } catch(...) { return false; }
}
bool c_verify_clsag(uint s_len, uint8_t* s, uint8_t k_len, uint8_t* k, uint8_t* I, uint8_t* p, uint8_t* m) {
rct::clsag clsag;
std::stringstream ss;
std::string str;
str.assign((char*) s, (size_t) s_len);
ss << str;
binary_archive<false> ba(ss);
::serialization::serialize(ba, clsag);
if (!ss.good()) {
return false;
}
rct::ctkeyV keys;
keys.resize(k_len);
for (uint8_t i = 0; i < k_len; i++) {
memcpy(keys[i].dest.bytes, &k[(i * 2) * 32], 32);
memcpy(keys[i].mask.bytes, &k[((i * 2) + 1) * 32], 32);
}
memcpy(clsag.I.bytes, I, 32);
rct::key pseudo_out;
memcpy(pseudo_out.bytes, p, 32);
2022-05-06 23:07:37 +00:00
rct::key msg;
memcpy(msg.bytes, m, 32);
try { return verRctCLSAGSimple(msg, clsag, keys, pseudo_out); } catch(...) { return false; }
}
}