serai/processor/scheduler/utxo/transaction-chaining/src/lib.rs

436 lines
16 KiB
Rust
Raw Normal View History

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![deny(missing_docs)]
use core::marker::PhantomData;
use std::collections::HashMap;
use group::GroupEncoding;
use serai_primitives::{Coin, Amount, Balance};
use serai_db::DbTxn;
use primitives::{OutputType, ReceivedOutput, Payment};
use scanner::{
LifetimeStage, ScannerFeed, KeyFor, AddressFor, OutputFor, EventualityFor, SchedulerUpdate,
Scheduler as SchedulerTrait,
};
use scheduler_primitives::*;
use utxo_scheduler_primitives::*;
mod db;
use db::Db;
/// The outputs which will be effected by a PlannedTransaction and received by Serai.
pub struct EffectedReceivedOutputs<S: ScannerFeed>(Vec<OutputFor<S>>);
/// A scheduler of transactions for networks premised on the UTXO model which support
/// transaction chaining.
pub struct Scheduler<S: ScannerFeed, P: TransactionPlanner<S, EffectedReceivedOutputs<S>>>(
PhantomData<S>,
PhantomData<P>,
);
impl<S: ScannerFeed, P: TransactionPlanner<S, EffectedReceivedOutputs<S>>> Scheduler<S, P> {
fn handle_queued_payments(
&mut self,
txn: &mut impl DbTxn,
active_keys: &[(KeyFor<S>, LifetimeStage)],
key: KeyFor<S>,
) -> Vec<EventualityFor<S>> {
let mut eventualities = vec![];
let mut accumulate_outputs = |txn, outputs: Vec<OutputFor<S>>| {
let mut outputs_by_key = HashMap::new();
for output in outputs {
Db::<S>::set_already_accumulated_output(txn, output.id());
let coin = output.balance().coin;
outputs_by_key
.entry((output.key().to_bytes().as_ref().to_vec(), coin))
.or_insert_with(|| (output.key(), Db::<S>::outputs(txn, output.key(), coin).unwrap()))
.1
.push(output);
}
for ((_key_vec, coin), (key, outputs)) in outputs_by_key {
Db::<S>::set_outputs(txn, key, coin, &outputs);
}
};
for coin in S::NETWORK.coins() {
// Fetch our operating costs and all our outputs
let mut operating_costs = Db::<S>::operating_costs(txn, *coin).0;
let mut outputs = Db::<S>::outputs(txn, key, *coin).unwrap();
// If we have more than the maximum amount of inputs, aggregate until we don't
{
while outputs.len() > MAX_INPUTS {
let Some(planned) = P::plan_transaction_with_fee_amortization(
&mut operating_costs,
fee_rates[coin],
outputs.drain(.. MAX_INPUTS).collect::<Vec<_>>(),
vec![],
Some(key_for_change),
) else {
// We amortized all payments, and even when just trying to make the change output, these
// inputs couldn't afford their own aggregation and were written off
Db::<S>::set_operating_costs(txn, *coin, Amount(operating_costs));
continue;
};
// Send the transactions off for signing
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned.signable);
// Push the Eventualities onto the result
eventualities.push(planned.eventuality);
// Accumulate the outputs
Db::set_outputs(txn, key, *coin, &outputs);
accumulate_outputs(txn, planned.auxilliary.0);
outputs = Db::outputs(txn, key, *coin).unwrap();
}
Db::<S>::set_operating_costs(txn, *coin, Amount(operating_costs));
}
// Now, handle the payments
let mut payments = Db::<S>::queued_payments(txn, key, *coin).unwrap();
if payments.is_empty() {
continue;
}
// If this is our only key, our outputs and operating costs should be greater than the
// payments' value
if active_keys.len() == 1 {
// The available amount to fulfill is the amount we have plus the amount we'll reduce by
// An alternative formulation would be `outputs >= (payments - operating costs)`, but
// that'd risk underflow
let value_available =
operating_costs + outputs.iter().map(|output| output.balance().amount.0).sum::<u64>();
assert!(
value_available >= payments.iter().map(|payment| payment.balance().amount.0).sum::<u64>()
);
}
// Find the set of payments we should fulfill at this time
loop {
let value_available =
operating_costs + outputs.iter().map(|output| output.balance().amount.0).sum::<u64>();
// Drop to just the payments we currently have the outputs for
{
let mut can_handle = 0;
let mut value_used = 0;
for payment in payments {
value_used += payment.balance().amount.0;
if value_available < value_used {
break;
}
can_handle += 1;
}
let remaining_payments = payments.drain(can_handle ..).collect::<Vec<_>>();
// Restore the rest to the database
Db::<S>::set_queued_payments(txn, key, *coin, &remaining_payments);
}
let payments_value = payments.iter().map(|payment| payment.balance().amount.0).sum::<u64>();
// If these payments are worth less than the operating costs, immediately drop them
if payments_value <= operating_costs {
operating_costs -= payments_value;
Db::<S>::set_operating_costs(txn, *coin, Amount(operating_costs));
// Reset payments to the queued payments
payments = Db::<S>::queued_payments(txn, key, *coin).unwrap();
// If there's no more payments, stop looking for which payments we should fulfill
if payments.is_empty() {
break;
}
// Find which of these we should handle
continue;
}
break;
}
if payments.is_empty() {
continue;
}
// Create a tree to fulfill all of the payments
struct TreeTransaction<S: ScannerFeed> {
payments: Vec<Payment<AddressFor<S>>>,
children: Vec<TreeTransaction<S>>,
value: u64,
}
let mut tree_transactions = vec![];
for payments in payments.chunks(MAX_OUTPUTS) {
let value = payments.iter().map(|payment| payment.balance().amount.0).sum::<u64>();
tree_transactions.push(TreeTransaction::<S> {
payments: payments.to_vec(),
children: vec![],
value,
});
}
// While we haven't calculated a tree root, or the tree root doesn't support a change output,
// keep working
while (tree_transactions.len() != 1) || (tree_transactions[0].payments.len() == MAX_OUTPUTS) {
let mut next_tree_transactions = vec![];
for children in tree_transactions.chunks(MAX_OUTPUTS) {
let payments = children
.iter()
.map(|child| {
Payment::new(
P::branch_address(key),
Balance { coin: *coin, amount: Amount(child.value) },
None,
)
})
.collect();
let value = children.iter().map(|child| child.value).sum();
next_tree_transactions.push(TreeTransaction {
payments,
children: children.to_vec(),
value,
});
}
tree_transactions = next_tree_transactions;
}
assert_eq!(tree_transactions.len(), 1);
assert!((tree_transactions.payments.len() + 1) <= MAX_OUTPUTS);
// Create the transaction for the root of the tree
let Some(planned) = P::plan_transaction_with_fee_amortization(
&mut operating_costs,
fee_rates[coin],
outputs,
tree_transactions.payments,
Some(key_for_change),
) else {
Db::<S>::set_operating_costs(txn, *coin, Amount(operating_costs));
continue;
};
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned.signable);
eventualities.push(planned.eventuality);
// We accumulate the change output, but consume the branches here
accumulate_outputs(
txn,
planned
.auxilliary
.0
.iter()
.filter(|output| output.kind() == OutputType::Change)
.cloned()
.collect(),
);
// Filter the outputs to the change outputs
let mut branch_outputs = planned.auxilliary.0;
branch_outputs.retain(|output| output.kind() == OutputType::Branch);
// This is recursive, yet only recurses with logarithmic depth
let execute_tree_transaction = |branch_outputs, children| {
assert_eq!(branch_outputs.len(), children.len());
// Sort the branch outputs by their value
branch_outputs.sort_by(|a, b| a.balance().amount.0.cmp(&b.balance().amount.0));
// Find the child for each branch output
// This is only done within a transaction, not across the layer, so we don't have branches
// created in transactions with less outputs (and therefore less fees) jump places with
// other branches
children.sort_by(|a, b| a.value.cmp(&b.value));
for (branch_output, child) in branch_outputs.into_iter().zip(children) {
assert_eq!(branch_output.kind(), OutputType::Branch);
Db::<S>::set_already_accumulated_output(txn, branch_output.id());
let Some(planned) = P::plan_transaction_with_fee_amortization(
// Uses 0 as there's no operating costs to incur/amortize here
&mut 0,
fee_rates[coin],
vec![branch_output],
child.payments,
None,
) else {
// This Branch isn't viable, so drop it (and its children)
continue;
};
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned.signable);
eventualities.push(planned.eventuality);
if !child.children.is_empty() {
execute_tree_transaction(planned.auxilliary.0, child.children);
}
}
};
if !tree_transaction.children.is_empty() {
execute_tree_transaction(branch_outputs, tree_transaction.children);
}
}
eventualities
}
}
impl<S: ScannerFeed, P: TransactionPlanner<S, EffectedReceivedOutputs<S>>> SchedulerTrait<S>
for Scheduler<S, P>
{
fn activate_key(&mut self, txn: &mut impl DbTxn, key: KeyFor<S>) {
for coin in S::NETWORK.coins() {
assert!(Db::<S>::outputs(txn, key, *coin).is_none());
Db::<S>::set_outputs(txn, key, *coin, &[]);
assert!(Db::<S>::queued_payments(txn, key, *coin).is_none());
Db::<S>::set_queued_payments(txn, key, *coin, &vec![]);
}
}
fn flush_key(&mut self, txn: &mut impl DbTxn, retiring_key: KeyFor<S>, new_key: KeyFor<S>) {
for coin in S::NETWORK.coins() {
let still_queued = Db::<S>::queued_payments(txn, retiring_key, *coin).unwrap();
let mut new_queued = Db::<S>::queued_payments(txn, new_key, *coin).unwrap();
let mut queued = still_queued;
queued.append(&mut new_queued);
Db::<S>::set_queued_payments(txn, retiring_key, *coin, &vec![]);
Db::<S>::set_queued_payments(txn, new_key, *coin, &queued);
}
}
fn retire_key(&mut self, txn: &mut impl DbTxn, key: KeyFor<S>) {
for coin in S::NETWORK.coins() {
assert!(Db::<S>::outputs(txn, key, *coin).unwrap().is_empty());
Db::<S>::del_outputs(txn, key, *coin);
assert!(Db::<S>::queued_payments(txn, key, *coin).unwrap().is_empty());
Db::<S>::del_queued_payments(txn, key, *coin);
}
}
fn update(
&mut self,
txn: &mut impl DbTxn,
active_keys: &[(KeyFor<S>, LifetimeStage)],
update: SchedulerUpdate<S>,
) -> HashMap<Vec<u8>, Vec<EventualityFor<S>>> {
// Accumulate all the outputs
for (key, _) in active_keys {
// Accumulate them in memory
let mut outputs_by_coin = HashMap::with_capacity(1);
for output in update.outputs().iter().filter(|output| output.key() == *key) {
match output.kind() {
OutputType::External | OutputType::Forwarded => {}
// Only accumulate these if we haven't already
OutputType::Branch | OutputType::Change => {
if Db::<S>::take_if_already_accumulated_output(txn, output.id()) {
continue;
}
}
}
let coin = output.balance().coin;
if let std::collections::hash_map::Entry::Vacant(e) = outputs_by_coin.entry(coin) {
e.insert(Db::<S>::outputs(txn, *key, coin).unwrap());
}
outputs_by_coin.get_mut(&coin).unwrap().push(output.clone());
}
// Flush them to the database
for (coin, outputs) in outputs_by_coin {
Db::<S>::set_outputs(txn, *key, coin, &outputs);
}
}
let mut fee_rates: HashMap<Coin, _> = todo!("TODO");
// Fulfill the payments we prior couldn't
let mut eventualities = HashMap::new();
for (key, _stage) in active_keys {
eventualities.insert(
key.to_bytes().as_ref().to_vec(),
self.handle_queued_payments(txn, active_keys, *key),
);
}
// TODO: If this key has been flushed, forward all outputs
// Create the transactions for the forwards/burns
{
let mut planned_txs = vec![];
for forward in update.forwards() {
let key = forward.key();
assert_eq!(active_keys.len(), 2);
assert_eq!(active_keys[0].1, LifetimeStage::Forwarding);
assert_eq!(active_keys[1].1, LifetimeStage::Active);
let forward_to_key = active_keys[1].0;
let Some(plan) = P::plan_transaction_with_fee_amortization(
// This uses 0 for the operating costs as we don't incur any here
// If the output can't pay for itself to be forwarded, we simply drop it
&mut 0,
fee_rates[&forward.balance().coin],
vec![forward.clone()],
vec![Payment::new(P::forwarding_address(forward_to_key), forward.balance(), None)],
None,
) else {
continue;
};
planned_txs.push((key, plan));
}
for to_return in update.returns() {
let key = to_return.output().key();
let out_instruction =
Payment::new(to_return.address().clone(), to_return.output().balance(), None);
let Some(plan) = P::plan_transaction_with_fee_amortization(
// This uses 0 for the operating costs as we don't incur any here
// If the output can't pay for itself to be returned, we simply drop it
&mut 0,
fee_rates[&out_instruction.balance().coin],
vec![to_return.output().clone()],
vec![out_instruction],
None,
) else {
continue;
};
planned_txs.push((key, plan));
}
for (key, planned_tx) in planned_txs {
// Send the transactions off for signing
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned_tx.signable);
// Insert the Eventualities into the result
eventualities[key.to_bytes().as_ref()].push(planned_tx.eventuality);
}
eventualities
}
}
fn fulfill(
&mut self,
txn: &mut impl DbTxn,
active_keys: &[(KeyFor<S>, LifetimeStage)],
mut payments: Vec<Payment<AddressFor<S>>>,
) -> HashMap<Vec<u8>, Vec<EventualityFor<S>>> {
// Find the key to filfill these payments with
let fulfillment_key = match active_keys[0].1 {
LifetimeStage::ActiveYetNotReporting => {
panic!("expected to fulfill payments despite not reporting for the oldest key")
}
LifetimeStage::Active | LifetimeStage::UsingNewForChange => active_keys[0].0,
LifetimeStage::Forwarding | LifetimeStage::Finishing => active_keys[1].0,
};
// Queue the payments for this key
for coin in S::NETWORK.coins() {
let mut queued_payments = Db::<S>::queued_payments(txn, fulfillment_key, *coin).unwrap();
queued_payments
.extend(payments.iter().filter(|payment| payment.balance().coin == *coin).cloned());
Db::<S>::set_queued_payments(txn, fulfillment_key, *coin, &queued_payments);
}
// Handle the queued payments
HashMap::from([(
fulfillment_key.to_bytes().as_ref().to_vec(),
self.handle_queued_payments(txn, active_keys, fulfillment_key),
)])
}
}