p2pool/src/pool_block.cpp
2023-01-09 16:14:33 +01:00

439 lines
12 KiB
C++

/*
* This file is part of the Monero P2Pool <https://github.com/SChernykh/p2pool>
* Copyright (c) 2021-2023 SChernykh <https://github.com/SChernykh>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "pool_block.h"
#include "keccak.h"
#include "side_chain.h"
#include "pow_hash.h"
#include "crypto.h"
static constexpr char log_category_prefix[] = "PoolBlock ";
#include "pool_block_parser.inl"
namespace p2pool {
PoolBlock::PoolBlock()
: m_majorVersion(0)
, m_minorVersion(0)
, m_timestamp(0)
, m_prevId{}
, m_nonce(0)
, m_txinGenHeight(0)
, m_txkeyPub{}
, m_extraNonceSize(0)
, m_extraNonce(0)
, m_txkeySecSeed{}
, m_txkeySec{}
, m_parent{}
, m_sidechainHeight(0)
, m_difficulty{}
, m_cumulativeDifficulty{}
, m_sidechainExtraBuf{}
, m_sidechainId{}
, m_depth(0)
, m_verified(false)
, m_invalid(false)
, m_broadcasted(false)
, m_wantBroadcast(false)
, m_precalculated(false)
, m_localTimestamp(seconds_since_epoch())
{
uv_mutex_init_checked(&m_lock);
}
PoolBlock::PoolBlock(const PoolBlock& b)
{
uv_mutex_init_checked(&m_lock);
operator=(b);
}
// cppcheck-suppress operatorEqVarError
PoolBlock& PoolBlock::operator=(const PoolBlock& b)
{
if (this == &b) {
return *this;
}
const int lock_result = uv_mutex_trylock(&b.m_lock);
if (lock_result) {
LOGERR(1, "operator= uv_mutex_trylock failed. Fix the code!");
}
#if POOL_BLOCK_DEBUG
m_mainChainDataDebug = b.m_mainChainDataDebug;
m_sideChainDataDebug = b.m_sideChainDataDebug;
#endif
m_majorVersion = b.m_majorVersion;
m_minorVersion = b.m_minorVersion;
m_timestamp = b.m_timestamp;
m_prevId = b.m_prevId;
m_nonce = b.m_nonce;
m_txinGenHeight = b.m_txinGenHeight;
m_outputs = b.m_outputs;
m_txkeyPub = b.m_txkeyPub;
m_extraNonceSize = b.m_extraNonceSize;
m_extraNonce = b.m_extraNonce;
m_transactions = b.m_transactions;
m_minerWallet = b.m_minerWallet;
m_txkeySecSeed = b.m_txkeySecSeed;
m_txkeySec = b.m_txkeySec;
m_parent = b.m_parent;
m_uncles = b.m_uncles;
m_sidechainHeight = b.m_sidechainHeight;
m_difficulty = b.m_difficulty;
m_cumulativeDifficulty = b.m_cumulativeDifficulty;
memcpy(m_sidechainExtraBuf, b.m_sidechainExtraBuf, sizeof(m_sidechainExtraBuf));
m_sidechainId = b.m_sidechainId;
m_depth = b.m_depth;
m_verified = b.m_verified;
m_invalid = b.m_invalid;
m_broadcasted = b.m_broadcasted;
m_wantBroadcast = b.m_wantBroadcast;
m_precalculated = b.m_precalculated;
m_localTimestamp = seconds_since_epoch();
if (lock_result == 0) {
uv_mutex_unlock(&b.m_lock);
}
return *this;
}
PoolBlock::~PoolBlock()
{
uv_mutex_destroy(&m_lock);
}
std::vector<uint8_t> PoolBlock::serialize_mainchain_data(size_t* header_size, size_t* miner_tx_size, int* outputs_offset, int* outputs_blob_size, const uint32_t* nonce, const uint32_t* extra_nonce) const
{
MutexLock lock(m_lock);
return serialize_mainchain_data_nolock(header_size, miner_tx_size, outputs_offset, outputs_blob_size, nonce, extra_nonce);
}
std::vector<uint8_t> PoolBlock::serialize_mainchain_data_nolock(size_t* header_size, size_t* miner_tx_size, int* outputs_offset, int* outputs_blob_size, const uint32_t* nonce, const uint32_t* extra_nonce) const
{
std::vector<uint8_t> data;
data.reserve(128 + m_outputs.size() * 39 + m_transactions.size() * HASH_SIZE);
// Header
data.push_back(m_majorVersion);
data.push_back(m_minorVersion);
writeVarint(m_timestamp, data);
data.insert(data.end(), m_prevId.h, m_prevId.h + HASH_SIZE);
if (!nonce) {
nonce = &m_nonce;
}
data.insert(data.end(), reinterpret_cast<const uint8_t*>(nonce), reinterpret_cast<const uint8_t*>(nonce) + NONCE_SIZE);
const size_t header_size0 = data.size();
if (header_size) {
*header_size = header_size0;
}
// Miner tx
data.push_back(TX_VERSION);
writeVarint(m_txinGenHeight + MINER_REWARD_UNLOCK_TIME, data);
data.push_back(1);
data.push_back(TXIN_GEN);
writeVarint(m_txinGenHeight, data);
const int outputs_offset0 = static_cast<int>(data.size());
if (outputs_offset) {
*outputs_offset = outputs_offset0;
}
writeVarint(m_outputs.size(), data);
const uint8_t tx_type = get_tx_type();
for (const TxOutput& output : m_outputs) {
writeVarint(output.m_reward, data);
data.push_back(tx_type);
data.insert(data.end(), output.m_ephPublicKey.h, output.m_ephPublicKey.h + HASH_SIZE);
if (tx_type == TXOUT_TO_TAGGED_KEY) {
data.push_back(static_cast<uint8_t>(output.m_viewTag));
}
}
if (outputs_blob_size) {
*outputs_blob_size = static_cast<int>(data.size()) - outputs_offset0;
}
uint8_t tx_extra[128];
uint8_t* p = tx_extra;
*(p++) = TX_EXTRA_TAG_PUBKEY;
memcpy(p, m_txkeyPub.h, HASH_SIZE);
p += HASH_SIZE;
uint64_t extra_nonce_size = m_extraNonceSize;
if (extra_nonce_size > EXTRA_NONCE_MAX_SIZE) {
LOGERR(1, "extra nonce size is too large (" << extra_nonce_size << "), fix the code!");
extra_nonce_size = EXTRA_NONCE_MAX_SIZE;
}
*(p++) = TX_EXTRA_NONCE;
*(p++) = static_cast<uint8_t>(extra_nonce_size);
if (!extra_nonce) {
extra_nonce = &m_extraNonce;
}
memcpy(p, extra_nonce, EXTRA_NONCE_SIZE);
p += EXTRA_NONCE_SIZE;
if (extra_nonce_size > EXTRA_NONCE_SIZE) {
memset(p, 0, extra_nonce_size - EXTRA_NONCE_SIZE);
p += extra_nonce_size - EXTRA_NONCE_SIZE;
}
*(p++) = TX_EXTRA_MERGE_MINING_TAG;
*(p++) = HASH_SIZE;
memcpy(p, m_sidechainId.h, HASH_SIZE);
p += HASH_SIZE;
writeVarint(static_cast<size_t>(p - tx_extra), data);
data.insert(data.end(), tx_extra, p);
data.push_back(0);
if (miner_tx_size) {
*miner_tx_size = data.size() - header_size0;
}
writeVarint(m_transactions.size() - 1, data);
const uint8_t* t = reinterpret_cast<const uint8_t*>(m_transactions.data());
data.insert(data.end(), t + HASH_SIZE, t + m_transactions.size() * HASH_SIZE);
#if POOL_BLOCK_DEBUG
if (!m_mainChainDataDebug.empty() && (data != m_mainChainDataDebug)) {
LOGERR(1, "serialize_mainchain_data() has a bug, fix it!");
panic();
}
#endif
return data;
}
std::vector<uint8_t> PoolBlock::serialize_sidechain_data() const
{
std::vector<uint8_t> data;
MutexLock lock(m_lock);
data.reserve((m_uncles.size() + 4) * HASH_SIZE + 36);
const hash& spend = m_minerWallet.spend_public_key();
const hash& view = m_minerWallet.view_public_key();
const int sidechain_version = get_sidechain_version();
data.insert(data.end(), spend.h, spend.h + HASH_SIZE);
data.insert(data.end(), view.h, view.h + HASH_SIZE);
if (sidechain_version > 1) {
data.insert(data.end(), m_txkeySecSeed.h, m_txkeySecSeed.h + HASH_SIZE);
}
else {
data.insert(data.end(), m_txkeySec.h, m_txkeySec.h + HASH_SIZE);
}
data.insert(data.end(), m_parent.h, m_parent.h + HASH_SIZE);
writeVarint(m_uncles.size(), data);
for (const hash& id : m_uncles) {
data.insert(data.end(), id.h, id.h + HASH_SIZE);
}
writeVarint(m_sidechainHeight, data);
writeVarint(m_difficulty.lo, data);
writeVarint(m_difficulty.hi, data);
writeVarint(m_cumulativeDifficulty.lo, data);
writeVarint(m_cumulativeDifficulty.hi, data);
if (sidechain_version > 1) {
const uint8_t* p = reinterpret_cast<const uint8_t*>(m_sidechainExtraBuf);
data.insert(data.end(), p, p + sizeof(m_sidechainExtraBuf));
}
#if POOL_BLOCK_DEBUG
if (!m_sideChainDataDebug.empty() && (data != m_sideChainDataDebug)) {
LOGERR(1, "serialize_sidechain_data() has a bug, fix it!");
panic();
}
#endif
return data;
}
void PoolBlock::reset_offchain_data()
{
// Defaults for off-chain variables
m_depth = 0;
m_verified = false;
m_invalid = false;
m_broadcasted = false;
m_wantBroadcast = false;
m_precalculated = false;
m_localTimestamp = seconds_since_epoch();
}
bool PoolBlock::get_pow_hash(RandomX_Hasher_Base* hasher, uint64_t height, const hash& seed_hash, hash& pow_hash)
{
alignas(8) uint8_t hashes[HASH_SIZE * 3];
uint64_t* second_hash = reinterpret_cast<uint64_t*>(hashes + HASH_SIZE);
second_hash[0] = 0x14281e7a9e7836bcull;
second_hash[1] = 0x7d818f8229424636ull;
second_hash[2] = 0x9165d677b4f71266ull;
second_hash[3] = 0x8ac9bc64e0a996ffull;
memset(hashes + HASH_SIZE * 2, 0, HASH_SIZE);
uint64_t count;
uint8_t blob[128];
size_t blob_size = 0;
{
MutexLock lock(m_lock);
size_t header_size, miner_tx_size;
const std::vector<uint8_t> mainchain_data = serialize_mainchain_data_nolock(&header_size, &miner_tx_size, nullptr, nullptr, nullptr, nullptr);
if (!header_size || !miner_tx_size || (mainchain_data.size() < header_size + miner_tx_size)) {
LOGERR(1, "tried to calculate PoW of uninitialized block");
return false;
}
blob_size = header_size;
memcpy(blob, mainchain_data.data(), blob_size);
const uint8_t* miner_tx = mainchain_data.data() + header_size;
hash tmp;
keccak(miner_tx, static_cast<int>(miner_tx_size) - 1, tmp.h);
memcpy(hashes, tmp.h, HASH_SIZE);
count = m_transactions.size();
uint8_t* h = reinterpret_cast<uint8_t*>(m_transactions.data());
keccak(reinterpret_cast<uint8_t*>(hashes), HASH_SIZE * 3, tmp.h);
memcpy(h, tmp.h, HASH_SIZE);
if (count == 1) {
memcpy(blob + blob_size, h, HASH_SIZE);
}
else if (count == 2) {
keccak(h, HASH_SIZE * 2, tmp.h);
memcpy(blob + blob_size, tmp.h, HASH_SIZE);
}
else {
size_t i, j, cnt;
for (i = 0, cnt = 1; cnt <= count; ++i, cnt <<= 1) {}
cnt >>= 1;
std::vector<uint8_t> tmp_ints(cnt * HASH_SIZE);
memcpy(tmp_ints.data(), h, (cnt * 2 - count) * HASH_SIZE);
for (i = cnt * 2 - count, j = cnt * 2 - count; j < cnt; i += 2, ++j) {
keccak(h + i * HASH_SIZE, HASH_SIZE * 2, tmp.h);
memcpy(tmp_ints.data() + j * HASH_SIZE, tmp.h, HASH_SIZE);
}
while (cnt > 2) {
cnt >>= 1;
for (i = 0, j = 0; j < cnt; i += 2, ++j) {
keccak(tmp_ints.data() + i * HASH_SIZE, HASH_SIZE * 2, tmp.h);
memcpy(tmp_ints.data() + j * HASH_SIZE, tmp.h, HASH_SIZE);
}
}
keccak(tmp_ints.data(), HASH_SIZE * 2, tmp.h);
memcpy(blob + blob_size, tmp.h, HASH_SIZE);
}
}
blob_size += HASH_SIZE;
writeVarint(count, [&blob, &blob_size](uint8_t b) { blob[blob_size++] = b; });
return hasher->calculate(blob, blob_size, height, seed_hash, pow_hash);
}
uint64_t PoolBlock::get_payout(const Wallet& w) const
{
const uint8_t tx_type = get_tx_type();
for (size_t i = 0, n = m_outputs.size(); i < n; ++i) {
const TxOutput& out = m_outputs[i];
hash eph_public_key;
if (tx_type == TXOUT_TO_TAGGED_KEY) {
uint8_t view_tag;
const uint8_t expected_view_tag = out.m_viewTag;
if (w.get_eph_public_key(m_txkeySec, i, eph_public_key, view_tag, &expected_view_tag) && (eph_public_key == out.m_ephPublicKey)) {
return out.m_reward;
}
}
else {
uint8_t view_tag;
if (w.get_eph_public_key(m_txkeySec, i, eph_public_key, view_tag) && (eph_public_key == out.m_ephPublicKey)) {
return out.m_reward;
}
}
}
return 0;
}
hash PoolBlock::calculate_tx_key_seed() const
{
const char domain[] = "tx_key_seed";
const uint32_t zero = 0;
const std::vector<uint8_t> mainchain_data = serialize_mainchain_data(nullptr, nullptr, nullptr, nullptr, &zero, &zero);
const std::vector<uint8_t> sidechain_data = serialize_sidechain_data();
hash result;
keccak_custom([&domain, &mainchain_data, &sidechain_data](int offset) -> uint8_t {
size_t k = offset;
if (k < sizeof(domain)) return domain[k];
k -= sizeof(domain);
if (k < mainchain_data.size()) return mainchain_data[k];
k -= mainchain_data.size();
return sidechain_data[k];
}, static_cast<int>(sizeof(domain) + mainchain_data.size() + sidechain_data.size()), result.h, HASH_SIZE);
return result;
}
} // namespace p2pool