p2pool/src/crypto.cpp

492 lines
12 KiB
C++

/*
* This file is part of the Monero P2Pool <https://github.com/SChernykh/p2pool>
* Copyright (c) 2021-2023 SChernykh <https://github.com/SChernykh>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "crypto.h"
#include "keccak.h"
#include "uv_util.h"
extern "C" {
#include "crypto-ops.h"
}
// l = 2^252 + 27742317777372353535851937790883648493.
// l fits 15 times in 32 bytes (iow, 15 l is the highest multiple of l that fits in 32 bytes)
static constexpr uint8_t limit[32] = { 0xe3, 0x6a, 0x67, 0x72, 0x8b, 0xce, 0x13, 0x29, 0x8f, 0x30, 0x82, 0x8c, 0x0b, 0xa4, 0x10, 0x39, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf0 };
namespace p2pool {
namespace {
class RandomBytes
{
public:
RandomBytes() : rng(RandomDeviceSeed::instance), dist(0, 255)
{
uv_mutex_init_checked(&m);
// Diffuse the initial state in case it has low quality
rng.discard(10000);
}
~RandomBytes()
{
uv_mutex_destroy(&m);
}
void operator()(uint8_t (&bytes)[HASH_SIZE])
{
MutexLock lock(m);
for (size_t i = 0; i < HASH_SIZE; ++i) {
bytes[i] = static_cast<uint8_t>(dist(rng));
}
}
private:
uv_mutex_t m;
std::mt19937_64 rng;
std::uniform_int_distribution<> dist;
};
static RandomBytes randomBytes;
}
static FORCEINLINE bool less32(const uint8_t* k0, const uint8_t* k1)
{
for (int n = 31; n >= 0; --n)
{
if (k0[n] < k1[n])
return true;
if (k0[n] > k1[n])
return false;
}
return false;
}
// cppcheck-suppress constParameterReference
void generate_keys(hash& pub, hash& sec)
{
do {
do { randomBytes(sec.h); } while (!less32(sec.h, limit));
sc_reduce32(sec.h);
} while (!sc_isnonzero(sec.h));
ge_p3 point;
ge_scalarmult_base(&point, sec.h);
ge_p3_tobytes(pub.h, &point);
}
void generate_keys_deterministic(hash& pub, hash& sec, const uint8_t* entropy, size_t len)
{
uint32_t counter = 0;
do {
do {
++counter;
keccak_custom([entropy, len, counter](int offset)
{
if (offset < static_cast<int>(len)) {
return entropy[offset];
}
return static_cast<uint8_t>(counter >> ((offset - len) * 8));
}, static_cast<int>(len + sizeof(counter)), sec.h, HASH_SIZE);
} while (!less32(sec.h, limit));
sc_reduce32(sec.h);
} while (!sc_isnonzero(sec.h));
ge_p3 point;
ge_scalarmult_base(&point, sec.h);
ge_p3_tobytes(pub.h, &point);
}
bool check_keys(const hash& pub, const hash& sec)
{
// From ge_scalarmult_base's comment: "preconditions a[31] <= 127"
if (sec.h[HASH_SIZE - 1] > 127) {
return false;
}
ge_p3 point;
ge_scalarmult_base(&point, sec.h);
hash pub_check;
ge_p3_tobytes(pub_check.h, &point);
return pub == pub_check;
}
static FORCEINLINE void hash_to_scalar(const uint8_t* data, int length, uint8_t (&res)[HASH_SIZE])
{
keccak(data, length, res);
sc_reduce32(res);
}
static FORCEINLINE void derivation_to_scalar(const hash& derivation, size_t output_index, uint8_t (&res)[HASH_SIZE])
{
struct {
uint8_t derivation[HASH_SIZE];
uint8_t output_index[(sizeof(size_t) * 8 + 6) / 7];
} buf;
memcpy(buf.derivation, derivation.h, sizeof(buf.derivation));
uint8_t* p = buf.output_index;
writeVarint(output_index, [&p](uint8_t b) { *(p++) = b; });
const uint8_t* data = buf.derivation;
hash_to_scalar(data, static_cast<int>(p - data), res);
}
class Cache : public nocopy_nomove
{
public:
Cache()
: derivations(new DerivationsMap())
, public_keys(new PublicKeysMap())
, tx_keys(new TxKeysMap())
{
uv_rwlock_init_checked(&derivations_lock);
uv_rwlock_init_checked(&public_keys_lock);
uv_rwlock_init_checked(&tx_keys_lock);
}
~Cache()
{
delete derivations;
delete public_keys;
delete tx_keys;
uv_rwlock_destroy(&derivations_lock);
uv_rwlock_destroy(&public_keys_lock);
uv_rwlock_destroy(&tx_keys_lock);
}
bool get_derivation(const hash& key1, const hash& key2, size_t output_index, hash& derivation, uint8_t& view_tag)
{
std::array<uint8_t, HASH_SIZE * 2> index;
memcpy(index.data(), key1.h, HASH_SIZE);
memcpy(index.data() + HASH_SIZE, key2.h, HASH_SIZE);
derivation = {};
{
ReadLock lock(derivations_lock);
auto it = derivations->find(index);
if (it != derivations->end()) {
const DerivationEntry& entry = it->second;
derivation = entry.m_derivation;
if (entry.find_view_tag(output_index, view_tag)) {
return true;
}
}
}
if (derivation.empty()) {
ge_p3 point;
ge_p2 point2;
ge_p1p1 point3;
if (ge_frombytes_vartime(&point, key1.h) != 0) {
return false;
}
ge_scalarmult(&point2, key2.h, &point);
ge_mul8(&point3, &point2);
ge_p1p1_to_p2(&point2, &point3);
ge_tobytes(reinterpret_cast<uint8_t*>(&derivation), &point2);
}
derive_view_tag(derivation, output_index, view_tag);
const uint64_t t = seconds_since_epoch();
{
WriteLock lock(derivations_lock);
DerivationEntry& entry = derivations->emplace(index, DerivationEntry{ derivation, { 0xFFFFFFFFUL, 0xFFFFFFFFUL }, {}, t }).first->second;
entry.add_view_tag(static_cast<uint32_t>(output_index << 8) | view_tag);
}
return true;
}
bool get_public_key(const hash& derivation, size_t output_index, const hash& base, hash& derived_key)
{
std::array<uint8_t, HASH_SIZE * 2 + sizeof(size_t)> index;
memcpy(index.data(), derivation.h, HASH_SIZE);
memcpy(index.data() + HASH_SIZE, base.h, HASH_SIZE);
memcpy(index.data() + HASH_SIZE * 2, &output_index, sizeof(size_t));
{
ReadLock lock(public_keys_lock);
auto it = public_keys->find(index);
if (it != public_keys->end()) {
derived_key = it->second.m_key;
return true;
}
}
uint8_t scalar[HASH_SIZE];
ge_p3 point1;
ge_p3 point2;
ge_cached point3;
ge_p1p1 point4;
ge_p2 point5;
if (ge_frombytes_vartime(&point1, base.h) != 0) {
return false;
}
derivation_to_scalar(derivation, output_index, scalar);
ge_scalarmult_base(&point2, reinterpret_cast<uint8_t*>(&scalar));
ge_p3_to_cached(&point3, &point2);
ge_add(&point4, &point1, &point3);
ge_p1p1_to_p2(&point5, &point4);
ge_tobytes(derived_key.h, &point5);
const uint64_t t = seconds_since_epoch();
{
WriteLock lock(public_keys_lock);
public_keys->emplace(index, PublicKeyEntry{ derived_key, t });
}
return true;
}
void get_tx_keys(hash& pub, hash& sec, const hash& seed, const hash& monero_block_id)
{
std::array<uint8_t, HASH_SIZE * 2> index;
memcpy(index.data(), seed.h, HASH_SIZE);
memcpy(index.data() + HASH_SIZE, monero_block_id.h, HASH_SIZE);
{
ReadLock lock(tx_keys_lock);
auto it = tx_keys->find(index);
if (it != tx_keys->end()) {
pub = it->second.m_pub;
sec = it->second.m_sec;
return;
}
}
static constexpr char domain[] = "tx_secret_key";
static constexpr size_t N = sizeof(domain) - 1;
uint8_t entropy[N + HASH_SIZE * 2];
memcpy(entropy, domain, N);
memcpy(entropy + N, seed.h, HASH_SIZE);
memcpy(entropy + N + HASH_SIZE, monero_block_id.h, HASH_SIZE);
generate_keys_deterministic(pub, sec, entropy, sizeof(entropy));
const uint64_t t = seconds_since_epoch();
{
WriteLock lock(tx_keys_lock);
tx_keys->emplace(index, TxKeyEntry{ pub, sec, t });
}
}
void clear(uint64_t timestamp)
{
if (timestamp) {
auto clean_old = [timestamp](auto* table) {
for (auto it = table->begin(); it != table->end();) {
if (it->second.m_timestamp < timestamp) {
it = table->erase(it);
}
else {
++it;
}
}
};
{
WriteLock lock(derivations_lock);
clean_old(derivations);
}
{
WriteLock lock(public_keys_lock);
clean_old(public_keys);
}
{
WriteLock lock(tx_keys_lock);
clean_old(tx_keys);
}
return;
}
{
WriteLock lock(derivations_lock);
delete derivations;
derivations = new DerivationsMap();
derivations->reserve(5000);
}
{
WriteLock lock(public_keys_lock);
delete public_keys;
public_keys = new PublicKeysMap();
public_keys->reserve(5000);
}
{
WriteLock lock(tx_keys_lock);
delete tx_keys;
tx_keys = new TxKeysMap();
tx_keys->reserve(50);
}
}
private:
struct DerivationEntry
{
hash m_derivation;
uint32_t m_viewTags1[2] = { 0xFFFFFFFFUL, 0xFFFFFFFFUL };
std::vector<uint32_t> m_viewTags2;
// cppcheck-suppress unusedStructMember
uint64_t m_timestamp;
FORCEINLINE bool find_view_tag(size_t output_index, uint8_t& view_tag) const
{
#define ITER(i) do { \
const uint32_t k = m_viewTags1[i]; \
if ((k >> 8) == output_index) { \
view_tag = static_cast<uint8_t>(k); \
return true; \
} \
} while(0)
ITER(0);
ITER(1);
#undef ITER
for (const uint32_t k : m_viewTags2) {
if ((k >> 8) == output_index) {
view_tag = static_cast<uint8_t>(k);
return true;
}
}
return false;
}
FORCEINLINE void add_view_tag(uint32_t k)
{
#define ITER(i) do { \
const uint32_t t = m_viewTags1[i]; \
if (t == 0xFFFFFFFFUL) { \
m_viewTags1[i] = k; \
return; \
} \
else if (t == k) { \
return; \
} \
} while (0)
ITER(0);
ITER(1);
#undef ITER
if (std::find(m_viewTags2.begin(), m_viewTags2.end(), k) == m_viewTags2.end()) {
m_viewTags2.emplace_back(k);
}
}
};
struct PublicKeyEntry
{
hash m_key;
// cppcheck-suppress unusedStructMember
uint64_t m_timestamp;
};
struct TxKeyEntry
{
hash m_pub;
hash m_sec;
// cppcheck-suppress unusedStructMember
uint64_t m_timestamp;
};
typedef unordered_map<std::array<uint8_t, HASH_SIZE * 2>, DerivationEntry> DerivationsMap;
typedef unordered_map<std::array<uint8_t, HASH_SIZE * 2 + sizeof(size_t)>, PublicKeyEntry> PublicKeysMap;
typedef unordered_map<std::array<uint8_t, HASH_SIZE * 2>, TxKeyEntry> TxKeysMap;
uv_rwlock_t derivations_lock;
DerivationsMap* derivations;
uv_rwlock_t public_keys_lock;
PublicKeysMap* public_keys;
uv_rwlock_t tx_keys_lock;
TxKeysMap* tx_keys;
};
static Cache* cache = nullptr;
bool generate_key_derivation(const hash& key1, const hash& key2, size_t output_index, hash& derivation, uint8_t& view_tag)
{
return cache->get_derivation(key1, key2, output_index, derivation, view_tag);
}
bool derive_public_key(const hash& derivation, size_t output_index, const hash& base, hash& derived_key)
{
return cache->get_public_key(derivation, output_index, base, derived_key);
}
void get_tx_keys(hash& pub, hash& sec, const hash& seed, const hash& monero_block_id)
{
cache->get_tx_keys(pub, sec, seed, monero_block_id);
}
void derive_view_tag(const hash& derivation, size_t output_index, uint8_t& view_tag)
{
constexpr uint8_t salt[] = "view_tag";
constexpr size_t SALT_SIZE = sizeof(salt) - 1;
uint8_t buf[64];
memcpy(buf, salt, SALT_SIZE);
memcpy(buf + SALT_SIZE, derivation.h, HASH_SIZE);
uint8_t* p = buf + SALT_SIZE + HASH_SIZE;
writeVarint(output_index, [&p](uint8_t b) { *(p++) = b; });
hash view_tag_full;
keccak(buf, static_cast<int>(p - buf), view_tag_full.h);
view_tag = view_tag_full.h[0];
}
void init_crypto_cache()
{
if (!cache) {
cache = new Cache();
}
}
void destroy_crypto_cache()
{
if (cache) {
delete cache;
cache = nullptr;
}
}
void clear_crypto_cache(uint64_t timestamp)
{
if (cache) {
cache->clear(timestamp);
}
}
} // namespace p2pool