p2pool/src/merkle.cpp
2024-01-02 14:28:00 +01:00

317 lines
6.2 KiB
C++

/*
* This file is part of the Monero P2Pool <https://github.com/SChernykh/p2pool>
* Copyright (c) 2021-2024 SChernykh <https://github.com/SChernykh>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "keccak.h"
#include "merkle.h"
#include "keccak.h"
#include "sha256.h"
namespace p2pool {
void merkle_hash(const std::vector<hash>& hashes, root_hash& root)
{
const size_t count = hashes.size();
const uint8_t* h = hashes[0].h;
if (count == 1) {
root = root_hash(hashes[0]);
}
else if (count == 2) {
keccak(h, HASH_SIZE * 2, root.h);
}
else {
size_t cnt = 1;
do { cnt <<= 1; } while (cnt <= count);
cnt >>= 1;
std::vector<hash> tmp_ints(cnt);
const size_t k = cnt * 2 - count;
memcpy(tmp_ints.data(), h, k * HASH_SIZE);
for (size_t i = k, j = k; j < cnt; i += 2, ++j) {
keccak(h + i * HASH_SIZE, HASH_SIZE * 2, tmp_ints[j].h);
}
while (cnt > 2) {
cnt >>= 1;
for (size_t i = 0, j = 0; j < cnt; i += 2, ++j) {
keccak(tmp_ints[i].h, HASH_SIZE * 2, tmp_ints[j].h);
}
}
keccak(tmp_ints[0].h, HASH_SIZE * 2, root.h);
}
}
void merkle_hash_full_tree(const std::vector<hash>& hashes, std::vector<std::vector<hash>>& tree)
{
const size_t count = hashes.size();
const uint8_t* h = hashes[0].h;
tree.clear();
if (count == 1) {
tree.push_back(hashes);
}
else if (count == 2) {
hash tmp;
keccak(h, HASH_SIZE * 2, tmp.h);
tree.reserve(2);
tree.push_back(hashes);
tree.emplace_back(1, tmp);
}
else {
size_t cnt = 1, height = 1;
do {
cnt <<= 1;
++height;
} while (cnt <= count);
cnt >>= 1;
tree.reserve(height);
tree.push_back(hashes);
tree.emplace_back(cnt);
{
std::vector<hash>& cur = tree.back();
const size_t k = cnt * 2 - count;
memcpy(cur.data(), h, k * HASH_SIZE);
for (size_t i = k, j = k; j < cnt; i += 2, ++j) {
keccak(h + i * HASH_SIZE, HASH_SIZE * 2, cur[j].h);
}
}
while (cnt > 1) {
cnt >>= 1;
tree.emplace_back(cnt);
const std::vector<hash>& prev = tree[tree.size() - 2];
std::vector<hash>& cur = tree[tree.size() - 1];
cur.resize(cnt);
for (size_t i = 0, j = 0; j < cnt; i += 2, ++j) {
keccak(prev[i].h, HASH_SIZE * 2, cur[j].h);
}
}
}
}
bool get_merkle_proof(const std::vector<std::vector<hash>>& tree, const hash& h, std::vector<hash>& proof)
{
if (tree.empty()) {
return false;
}
const std::vector<hash>& hashes = tree[0];
const size_t count = hashes.size();
size_t index = 0;
while ((index < count) && (hashes[index] != h)) {
++index;
}
if (index >= count) {
return false;
}
proof.clear();
if (count == 1) {
return true;
}
else if (count == 2) {
proof.emplace_back(hashes[index ^ 1]);
}
else {
size_t cnt = 1;
do { cnt <<= 1; } while (cnt <= count);
cnt >>= 1;
const size_t k = cnt * 2 - count;
if (index >= k) {
index -= k;
const size_t j = (index ^ 1) + k;
if (j >= count) {
return false;
}
proof.emplace_back(hashes[j]);
index = (index >> 1) + k;
}
const size_t n = tree.size();
for (size_t i = 1; cnt >= 2; ++i, index >>= 1, cnt >>= 1) {
const size_t j = index ^ 1;
if ((i >= n) || (j >= tree[i].size())) {
return false;
}
proof.emplace_back(tree[i][j]);
}
}
return true;
}
root_hash get_root_from_proof(hash h, const std::vector<hash>& proof, size_t index, size_t count)
{
if (count == 1) {
return root_hash(h);
}
if (index >= count) {
return root_hash();
}
hash tmp[2];
if (count == 2) {
if (proof.empty()) {
return root_hash();
}
if (index & 1) {
tmp[0] = proof[0];
tmp[1] = h;
}
else {
tmp[0] = h;
tmp[1] = proof[0];
}
keccak(tmp[0].h, HASH_SIZE * 2, h.h);
}
else {
size_t cnt = 1;
do { cnt <<= 1; } while (cnt <= count);
cnt >>= 1;
size_t proof_index = 0;
const size_t k = cnt * 2 - count;
if (index >= k) {
index -= k;
if (proof.empty()) {
return root_hash();
}
if (index & 1) {
tmp[0] = proof[0];
tmp[1] = h;
}
else {
tmp[0] = h;
tmp[1] = proof[0];
}
keccak(tmp[0].h, HASH_SIZE * 2, h.h);
index = (index >> 1) + k;
proof_index = 1;
}
for (; cnt >= 2; ++proof_index, index >>= 1, cnt >>= 1) {
if (proof_index >= proof.size()) {
return root_hash();
}
if (index & 1) {
tmp[0] = proof[proof_index];
tmp[1] = h;
}
else {
tmp[0] = h;
tmp[1] = proof[proof_index];
}
keccak(tmp[0].h, HASH_SIZE * 2, h.h);
}
}
return root_hash(h);
}
bool verify_merkle_proof(hash h, const std::vector<hash>& proof, size_t index, size_t count, const root_hash& root)
{
return get_root_from_proof(h, proof, index, count) == root;
}
uint32_t get_aux_slot(const hash &id, uint32_t nonce, uint32_t n_aux_chains)
{
if (n_aux_chains <= 1) {
return 0;
}
constexpr uint8_t HASH_KEY_MM_SLOT = 'm';
uint8_t buf[HASH_SIZE + sizeof(uint32_t) + 1];
memcpy(buf, &id, HASH_SIZE);
memcpy(buf + HASH_SIZE, &nonce, sizeof(uint32_t));
buf[HASH_SIZE + sizeof(uint32_t)] = HASH_KEY_MM_SLOT;
hash res;
sha256(buf, sizeof(buf), res.h);
return *reinterpret_cast<uint32_t*>(res.h) % n_aux_chains;
}
bool find_aux_nonce(const std::vector<hash>& aux_id, uint32_t& nonce, uint32_t max_nonce)
{
const uint32_t n_aux_chains = static_cast<uint32_t>(aux_id.size());
if (n_aux_chains <= 1) {
nonce = 0;
return true;
}
std::vector<bool> slots;
for (uint32_t i = 0;; ++i) {
slots.assign(n_aux_chains, false);
uint32_t j;
for (j = 0; j < n_aux_chains; ++j) {
const uint32_t k = get_aux_slot(aux_id[j], i, n_aux_chains);
if (slots[k]) {
break;
}
slots[k] = true;
}
if (j >= n_aux_chains) {
nonce = i;
return true;
}
if (i == max_nonce) {
return false;
}
}
}
} // namespace p2pool