p2pool/tests/src/merkle_tests.cpp
SChernykh 21326c5103 Merkle trees: added get_position_from_path
Also double check against Monero's Merkle tree path code.
2024-05-14 19:37:38 +02:00

367 lines
9.3 KiB
C++

/*
* This file is part of the Monero P2Pool <https://github.com/SChernykh/p2pool>
* Copyright (c) 2021-2024 SChernykh <https://github.com/SChernykh>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "keccak.h"
#include "merkle.h"
#include "pool_block.h"
#include "keccak.h"
#include "gtest/gtest.h"
namespace p2pool {
// Original Monero's tree_path function to test against
size_t tree_hash_cnt(size_t count) {
size_t pow = 2;
while(pow < count) pow <<= 1;
return pow >> 1;
}
bool tree_path(size_t count, size_t idx, uint32_t* path)
{
if (count == 0)
return false;
if (count == 1) {
*path = 0;
}
else if (count == 2) {
*path = idx == 0 ? 0 : 1;
}
else {
size_t i, j;
*path = 0;
size_t cnt = tree_hash_cnt(count);
for (i = 2 * cnt - count, j = 2 * cnt - count; j < cnt; i += 2, ++j) {
if (idx == i || idx == i + 1)
{
*path = (*path << 1) | (idx == i ? 0 : 1);
idx = j;
}
}
assert(i == count);
while (cnt > 2) {
cnt >>= 1;
for (i = 0, j = 0; j < cnt; i += 2, ++j) {
if (idx == i || idx == i + 1)
{
*path = (*path << 1) | (idx == i ? 0 : 1);
idx = j;
}
}
}
if (idx == 0 || idx == 1)
{
*path = (*path << 1) | (idx == 0 ? 0 : 1);
idx = 0;
}
}
return true;
}
TEST(merkle, tree)
{
hash input[10];
uint8_t data[] = "data 0";
for (size_t i = 0; i < 10; ++i, ++data[sizeof(data) - 2]) {
keccak(data, sizeof(data) - 1, input[i].h);
}
root_hash root;
std::vector<hash> hashes(1, input[0]);
auto check_full_tree = [&hashes, &root]() {
std::vector<std::vector<hash>> tree;
merkle_hash_full_tree(hashes, tree);
ASSERT_GE(tree.size(), 1);
const std::vector<hash>& tree_root = tree.back();
ASSERT_EQ(tree_root.size(), 1);
ASSERT_EQ(tree_root[0], root);
ASSERT_EQ(tree[0], hashes);
if (tree.size() > 1) {
ASSERT_LE(tree[1].size(), hashes.size());
ASSERT_GE(tree[1].size() * 2, hashes.size());
const size_t spill_size = tree[1].size() * 2 - hashes.size();
for (size_t i = 0; i < spill_size; ++i) {
ASSERT_EQ(tree[1][i], hashes[i]);
}
for (size_t i = spill_size, j = spill_size; i < tree[1].size(); ++i, j += 2) {
hash tmp;
keccak(hashes[j].h, HASH_SIZE * 2, tmp.h);
ASSERT_EQ(tmp, tree[1][i]);
}
}
for (size_t i = tree.size() - 1; i > 1; --i) {
ASSERT_EQ(tree[i].size() * 2, tree[i - 1].size());
for (size_t j = 0; j < tree[i].size(); ++j) {
hash tmp;
keccak(tree[i - 1][j * 2].h, HASH_SIZE * 2, tmp.h);
ASSERT_EQ(tmp, tree[i][j]);
}
}
for (size_t i = 0, n = hashes.size(); i < n; ++i) {
const hash& h = hashes[i];
std::vector<hash> proof;
uint32_t path;
ASSERT_TRUE(get_merkle_proof(tree, h, proof, path));
uint32_t path_monero;
ASSERT_TRUE(tree_path(n, i, &path_monero));
ASSERT_EQ(path, path_monero);
ASSERT_TRUE(verify_merkle_proof(h, proof, i, n, root));
ASSERT_TRUE(verify_merkle_proof(h, proof, path, root));
ASSERT_EQ(get_position_from_path(n, path), i);
}
};
// 1 leaf
merkle_hash(hashes, root);
ASSERT_EQ(root, input[0]);
check_full_tree();
// 2 leaves
hashes.push_back(input[1]);
merkle_hash(hashes, root);
hash check[8];
keccak(input[0].h, HASH_SIZE * 2, check[0].h);
ASSERT_EQ(root, check[0]);
check_full_tree();
// 3 leaves
hashes.push_back(input[2]);
merkle_hash(hashes, root);
keccak(input[1].h, HASH_SIZE * 2, check[1].h);
check[0] = input[0];
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
ASSERT_EQ(root, check[0]);
check_full_tree();
// 4 leaves
hashes.push_back(input[3]);
merkle_hash(hashes, root);
keccak(input[0].h, HASH_SIZE * 2, check[0].h);
keccak(input[2].h, HASH_SIZE * 2, check[1].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
ASSERT_EQ(root, check[0]);
check_full_tree();
// 5 leaves
hashes.push_back(input[4]);
merkle_hash(hashes, root);
check[0] = input[0];
check[1] = input[1];
check[2] = input[2];
keccak(input[3].h, HASH_SIZE * 2, check[3].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
keccak(check[2].h, HASH_SIZE * 2, check[1].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
ASSERT_EQ(root, check[0]);
check_full_tree();
// 6 leaves
hashes.push_back(input[5]);
merkle_hash(hashes, root);
check[0] = input[0];
check[1] = input[1];
keccak(input[2].h, HASH_SIZE * 2, check[2].h);
keccak(input[4].h, HASH_SIZE * 2, check[3].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
keccak(check[2].h, HASH_SIZE * 2, check[1].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
ASSERT_EQ(root, check[0]);
check_full_tree();
// 7 leaves
hashes.push_back(input[6]);
merkle_hash(hashes, root);
check[0] = input[0];
keccak(input[1].h, HASH_SIZE * 2, check[1].h);
keccak(input[3].h, HASH_SIZE * 2, check[2].h);
keccak(input[5].h, HASH_SIZE * 2, check[3].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
keccak(check[2].h, HASH_SIZE * 2, check[1].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
ASSERT_EQ(root, check[0]);
check_full_tree();
// 8 leaves
hashes.push_back(input[7]);
merkle_hash(hashes, root);
keccak(input[0].h, HASH_SIZE * 2, check[0].h);
keccak(input[2].h, HASH_SIZE * 2, check[1].h);
keccak(input[4].h, HASH_SIZE * 2, check[2].h);
keccak(input[6].h, HASH_SIZE * 2, check[3].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
keccak(check[2].h, HASH_SIZE * 2, check[1].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
ASSERT_EQ(root, check[0]);
check_full_tree();
// 9 leaves
hashes.push_back(input[8]);
merkle_hash(hashes, root);
for (size_t i = 0; i < 7; ++i) {
check[i] = input[i];
}
keccak(input[7].h, HASH_SIZE * 2, check[7].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
keccak(check[2].h, HASH_SIZE * 2, check[1].h);
keccak(check[4].h, HASH_SIZE * 2, check[2].h);
keccak(check[6].h, HASH_SIZE * 2, check[3].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
keccak(check[2].h, HASH_SIZE * 2, check[1].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
ASSERT_EQ(root, check[0]);
check_full_tree();
// 10 leaves
hashes.push_back(input[9]);
merkle_hash(hashes, root);
for (size_t i = 0; i < 6; ++i) {
check[i] = input[i];
}
keccak(input[6].h, HASH_SIZE * 2, check[6].h);
keccak(input[8].h, HASH_SIZE * 2, check[7].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
keccak(check[2].h, HASH_SIZE * 2, check[1].h);
keccak(check[4].h, HASH_SIZE * 2, check[2].h);
keccak(check[6].h, HASH_SIZE * 2, check[3].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
keccak(check[2].h, HASH_SIZE * 2, check[1].h);
keccak(check[0].h, HASH_SIZE * 2, check[0].h);
ASSERT_EQ(root, check[0]);
check_full_tree();
}
TEST(merkle, aux_slot)
{
hash id;
ASSERT_EQ(get_aux_slot(id, 0, 0), 0U);
ASSERT_EQ(get_aux_slot(id, 0, 1), 0U);
ASSERT_EQ(get_aux_slot(id, 0, 2), 0U);
ASSERT_EQ(get_aux_slot(id, 0, 3), 0U);
ASSERT_EQ(get_aux_slot(id, 0, 4), 0U);
ASSERT_EQ(get_aux_slot(id, 0, 5), 1U);
ASSERT_EQ(get_aux_slot(id, 0, 6), 0U);
ASSERT_EQ(get_aux_slot(id, 0, 7), 5U);
ASSERT_EQ(get_aux_slot(id, 0, 8), 0U);
ASSERT_EQ(get_aux_slot(id, 0, 9), 6U);
ASSERT_EQ(get_aux_slot(id, 0, std::numeric_limits<uint32_t>::max()), 2389612776U);
ASSERT_EQ(get_aux_slot(id, 1, std::numeric_limits<uint32_t>::max()), 1080669337U);
}
TEST(merkle, aux_nonce)
{
std::vector<hash> aux_id;
uint32_t nonce;
ASSERT_TRUE(find_aux_nonce(aux_id, nonce));
ASSERT_EQ(nonce, 0U);
uint8_t data[] = "aux0";
const uint32_t nonces[] = { 0, 0, 0, 7, 16, 56, 1, 287, 1423, 1074 };
hash h;
for (size_t i = 0; i < 10; ++i, ++data[sizeof(data) - 2]) {
keccak(data, sizeof(data) - 1, h.h);
aux_id.push_back(h);
ASSERT_TRUE(find_aux_nonce(aux_id, nonce));
ASSERT_EQ(nonce, nonces[i]);
}
h = aux_id.front();
aux_id.clear();
aux_id.push_back(h);
aux_id.push_back(h);
ASSERT_FALSE(find_aux_nonce(aux_id, nonce));
}
TEST(merkle, params)
{
ASSERT_EQ(PoolBlock::encode_merkle_tree_data(1, 0), 0U);
ASSERT_EQ(PoolBlock::encode_merkle_tree_data(1, 0xFFFFFFFFU), 0xFFFFFFFF0ULL);
ASSERT_EQ(PoolBlock::encode_merkle_tree_data(127, 0), 0x3F6U);
ASSERT_EQ(PoolBlock::encode_merkle_tree_data(127, 0xFFFFFFFFU), 0x3FFFFFFFFF6ULL);
PoolBlock b;
uint32_t n1, nonce1;
b.m_merkleTreeData = 0;
b.decode_merkle_tree_data(n1, nonce1);
ASSERT_TRUE(n1 == 1 && nonce1 == 0);
b.m_merkleTreeData = 0xFFFFFFFF0ULL;
b.decode_merkle_tree_data(n1, nonce1);
ASSERT_TRUE(n1 == 1 && nonce1 == 0xFFFFFFFFU);
b.m_merkleTreeData = 0x3F6U;
b.decode_merkle_tree_data(n1, nonce1);
ASSERT_TRUE(n1 == 127 && nonce1 == 0);
b.m_merkleTreeData = 0x3FFFFFFFFF6ULL;
b.decode_merkle_tree_data(n1, nonce1);
ASSERT_TRUE(n1 == 127 && nonce1 == 0xFFFFFFFFU);
for (uint32_t n_aux_chains = 1; n_aux_chains < 128; ++n_aux_chains) {
for (uint32_t nonce = 1; nonce; nonce <<= 1) {
b.m_merkleTreeData = PoolBlock::encode_merkle_tree_data(n_aux_chains, nonce);
b.decode_merkle_tree_data(n1, nonce1);
ASSERT_EQ(n1, n_aux_chains);
ASSERT_EQ(nonce1, nonce);
}
}
}
}