/* * This file is part of the Monero P2Pool * Copyright (c) 2021-2023 SChernykh * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 3. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "common.h" #include "keccak.h" #include "merkle.h" #include "keccak.h" #include "sha256.h" namespace p2pool { void merkle_hash(const std::vector& hashes, hash& root) { const size_t count = hashes.size(); const uint8_t* h = hashes[0].h; if (count == 1) { root = hashes[0]; } else if (count == 2) { keccak(h, HASH_SIZE * 2, root.h); } else { size_t cnt = 1; do { cnt <<= 1; } while (cnt <= count); cnt >>= 1; std::vector tmp_ints(cnt); const size_t k = cnt * 2 - count; memcpy(tmp_ints.data(), h, k * HASH_SIZE); for (size_t i = k, j = k; j < cnt; i += 2, ++j) { keccak(h + i * HASH_SIZE, HASH_SIZE * 2, tmp_ints[j].h); } while (cnt > 2) { cnt >>= 1; for (size_t i = 0, j = 0; j < cnt; i += 2, ++j) { keccak(tmp_ints[i].h, HASH_SIZE * 2, tmp_ints[j].h); } } keccak(tmp_ints[0].h, HASH_SIZE * 2, root.h); } } void merkle_hash_full_tree(const std::vector& hashes, std::vector>& tree) { const size_t count = hashes.size(); const uint8_t* h = hashes[0].h; tree.clear(); if (count == 1) { tree.push_back(hashes); } else if (count == 2) { hash tmp; keccak(h, HASH_SIZE * 2, tmp.h); tree.reserve(2); tree.push_back(hashes); tree.emplace_back(1, tmp); } else { size_t cnt = 1, height = 1; do { cnt <<= 1; ++height; } while (cnt <= count); cnt >>= 1; tree.reserve(height); tree.push_back(hashes); tree.emplace_back(cnt); { std::vector& cur = tree.back(); const size_t k = cnt * 2 - count; memcpy(cur.data(), h, k * HASH_SIZE); for (size_t i = k, j = k; j < cnt; i += 2, ++j) { keccak(h + i * HASH_SIZE, HASH_SIZE * 2, cur[j].h); } } while (cnt > 1) { cnt >>= 1; tree.emplace_back(cnt); const std::vector& prev = tree[tree.size() - 2]; std::vector& cur = tree[tree.size() - 1]; cur.resize(cnt); for (size_t i = 0, j = 0; j < cnt; i += 2, ++j) { keccak(prev[i].h, HASH_SIZE * 2, cur[j].h); } } } } bool get_merkle_proof(const std::vector>& tree, const hash& h, std::vector& proof) { if (tree.empty()) { return false; } const std::vector& hashes = tree[0]; const size_t count = hashes.size(); size_t index = 0; while ((index < count) && (hashes[index] != h)) { ++index; } if (index >= count) { return false; } proof.clear(); if (count == 1) { return true; } else if (count == 2) { proof.emplace_back(hashes[index ^ 1]); } else { size_t cnt = 1; do { cnt <<= 1; } while (cnt <= count); cnt >>= 1; const size_t k = cnt * 2 - count; if (index >= k) { index -= k; const size_t j = (index ^ 1) + k; if (j >= count) { return false; } proof.emplace_back(hashes[j]); index = (index >> 1) + k; } const size_t n = tree.size(); for (size_t i = 1; cnt >= 2; ++i, index >>= 1, cnt >>= 1) { const size_t j = index ^ 1; if ((i >= n) || (j >= tree[i].size())) { return false; } proof.emplace_back(tree[i][j]); } } return true; } hash get_root_from_proof(hash h, const std::vector& proof, size_t index, size_t count) { if (count == 1) { return h; } if (index >= count) { return hash(); } hash tmp[2]; if (count == 2) { if (proof.empty()) { return hash(); } if (index & 1) { tmp[0] = proof[0]; tmp[1] = h; } else { tmp[0] = h; tmp[1] = proof[0]; } keccak(tmp[0].h, HASH_SIZE * 2, h.h); } else { size_t cnt = 1; do { cnt <<= 1; } while (cnt <= count); cnt >>= 1; size_t proof_index = 0; const size_t k = cnt * 2 - count; if (index >= k) { index -= k; if (proof.empty()) { return hash(); } if (index & 1) { tmp[0] = proof[0]; tmp[1] = h; } else { tmp[0] = h; tmp[1] = proof[0]; } keccak(tmp[0].h, HASH_SIZE * 2, h.h); index = (index >> 1) + k; proof_index = 1; } for (; cnt >= 2; ++proof_index, index >>= 1, cnt >>= 1) { if (proof_index >= proof.size()) { return hash(); } if (index & 1) { tmp[0] = proof[proof_index]; tmp[1] = h; } else { tmp[0] = h; tmp[1] = proof[proof_index]; } keccak(tmp[0].h, HASH_SIZE * 2, h.h); } } return h; } bool verify_merkle_proof(hash h, const std::vector& proof, size_t index, size_t count, const hash& root) { return get_root_from_proof(h, proof, index, count) == root; } uint32_t get_aux_slot(const hash &id, uint32_t nonce, uint32_t n_aux_chains) { if (n_aux_chains <= 1) { return 0; } constexpr uint8_t HASH_KEY_MM_SLOT = 'm'; uint8_t buf[HASH_SIZE + sizeof(uint32_t) + 1]; memcpy(buf, &id, HASH_SIZE); memcpy(buf + HASH_SIZE, &nonce, sizeof(uint32_t)); buf[HASH_SIZE + sizeof(uint32_t)] = HASH_KEY_MM_SLOT; hash res; sha256(buf, sizeof(buf), res.h); return *reinterpret_cast(res.h) % n_aux_chains; } bool find_aux_nonce(const std::vector& aux_id, uint32_t& nonce, uint32_t max_nonce) { const uint32_t n_aux_chains = static_cast(aux_id.size()); if (n_aux_chains <= 1) { nonce = 0; return true; } std::vector slots; for (uint32_t i = 0;; ++i) { slots.assign(n_aux_chains, false); uint32_t j; for (j = 0; j < n_aux_chains; ++j) { const uint32_t k = get_aux_slot(aux_id[j], i, n_aux_chains); if (slots[k]) { break; } slots[k] = true; } if (j >= n_aux_chains) { nonce = i; return true; } if (i == max_nonce) { return false; } } } } // namespace p2pool