p2pool/src/util.cpp

719 lines
16 KiB
C++
Raw Normal View History

2021-08-22 10:20:59 +00:00
/*
* This file is part of the Monero P2Pool <https://github.com/SChernykh/p2pool>
2023-01-04 12:07:55 +00:00
* Copyright (c) 2021-2023 SChernykh <https://github.com/SChernykh>
2021-08-22 10:20:59 +00:00
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "util.h"
#include "uv_util.h"
#include <map>
2023-04-05 12:47:44 +00:00
#include <istream>
#include <ostream>
2021-08-22 10:20:59 +00:00
2022-12-17 11:52:08 +00:00
#if !defined(_WIN32) && defined(HAVE_SCHED)
2021-08-22 10:20:59 +00:00
#include <sched.h>
#endif
2023-03-19 21:54:18 +00:00
#ifdef WITH_UPNP
#include "miniupnpc.h"
#include "upnpcommands.h"
#endif
2021-08-22 10:20:59 +00:00
static constexpr char log_category_prefix[] = "Util ";
namespace p2pool {
2022-11-10 10:33:57 +00:00
const char* VERSION = "v" STR2(P2POOL_VERSION_MAJOR) "." STR2(P2POOL_VERSION_MINOR) " (built"
2021-10-02 15:06:48 +00:00
#if defined(__clang__)
" with clang/" __clang_version__
#elif defined(__GNUC__)
" with GCC/" STR2(__GNUC__) "." STR2(__GNUC_MINOR__) "." STR2(__GNUC_PATCHLEVEL__)
#elif defined(_MSC_VER)
" with MSVC/" STR2(_MSC_VER)
#endif
" on " __DATE__ ")";
2021-08-22 10:20:59 +00:00
MinerCallbackHandler::~MinerCallbackHandler() {}
void panic_stop(const char* message)
2021-08-22 10:20:59 +00:00
{
fprintf(stderr, "P2Pool can't continue execution: panic at %s\n", message);
2021-08-22 10:20:59 +00:00
p2pool::log::stop();
do {
#ifdef _WIN32
if (IsDebuggerPresent()) {
__debugbreak();
}
#endif
2021-09-22 15:52:23 +00:00
abort();
2021-08-22 10:20:59 +00:00
} while (true);
}
void make_thread_background()
{
#ifdef _WIN32
SetThreadPriorityBoost(GetCurrentThread(), true);
SetThreadPriority(GetCurrentThread(), THREAD_MODE_BACKGROUND_BEGIN);
SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_IDLE);
2022-12-17 11:52:08 +00:00
#elif defined(HAVE_SCHED)
2021-08-22 10:20:59 +00:00
sched_param param;
param.sched_priority = 0;
if (sched_setscheduler(0, SCHED_IDLE, &param) != 0) {
sched_setscheduler(0, SCHED_BATCH, &param);
}
#endif
}
2022-11-15 21:20:54 +00:00
NOINLINE difficulty_type& difficulty_type::operator/=(difficulty_type b)
{
if (*this < b) {
lo = 0;
hi = 0;
return *this;
}
if (*this - b < b) {
lo = 1;
hi = 0;
return *this;
}
if (b.hi == 0) {
return operator/=(b.lo);
}
const uint64_t shift = bsr(b.hi) + 1;
const uint64_t divisor = shiftleft128(b.lo, b.hi, 64 - shift);
uint64_t t;
if (hi < divisor) {
uint64_t r;
t = udiv128(hi, lo, divisor, &r) >> shift;
}
else {
uint64_t r;
t = shiftright128(udiv128(hi - divisor, lo, divisor, &r), 1, shift);
}
difficulty_type product;
product.lo = umul128(b.lo, t, &product.hi);
uint64_t t1, t2;
t1 = umul128(b.hi, t, &t2);
product.hi += t1;
if (t2 || (product.hi < t1) || (*this < product)) {
--t;
}
lo = t;
hi = 0;
return *this;
}
2021-08-22 10:20:59 +00:00
NOINLINE bool difficulty_type::check_pow(const hash& pow_hash) const
{
const uint64_t* a = reinterpret_cast<const uint64_t*>(pow_hash.h);
uint64_t result[6] = {};
uint64_t product[6] = {};
if (LIKELY(hi == 0)) {
for (int i = 3; i >= 0; --i) {
product[0] = umul128(a[i], lo, &product[1]);
uint64_t carry = 0;
for (int k = i, l = 0; k < 5; ++k, ++l) {
2021-08-28 09:50:20 +00:00
uint64_t t = result[k] + product[l];
const uint64_t next_carry = static_cast<uint64_t>(t < result[k]);
t += carry;
carry = next_carry | static_cast<uint64_t>(t < result[k]);
2021-08-22 10:20:59 +00:00
result[k] = t;
}
if (result[4]) {
return false;
}
}
}
else {
const uint64_t* b = reinterpret_cast<const uint64_t*>(this);
for (int i = 3; i >= 0; --i) {
for (int j = 1; j >= 0; --j) {
product[0] = umul128(a[i], b[j], &product[1]);
uint64_t carry = 0;
for (int k = i + j, l = 0; k < 6; ++k, ++l) {
2021-08-28 09:50:20 +00:00
uint64_t t = result[k] + product[l];
const uint64_t next_carry = static_cast<uint64_t>(t < result[k]);
t += carry;
carry = next_carry | static_cast<uint64_t>(t < result[k]);
2021-08-22 10:20:59 +00:00
result[k] = t;
}
if (result[4] || result[5]) {
return false;
}
}
}
}
return true;
}
std::ostream& operator<<(std::ostream& s, const difficulty_type& d)
{
char buf[log::Stream::BUF_SIZE + 1];
log::Stream s1(buf);
s1 << d << '\0';
s << buf;
return s;
}
std::istream& operator>>(std::istream& s, difficulty_type& diff)
{
diff.lo = 0;
diff.hi = 0;
bool found_number = false;
char c;
while (s.good() && !s.eof()) {
s.read(&c, 1);
if (!s.good() || s.eof()) {
break;
}
if ('0' <= c && c <= '9') {
found_number = true;
const uint32_t digit = static_cast<uint32_t>(c - '0');
uint64_t hi;
diff.lo = umul128(diff.lo, 10, &hi) + digit;
if (diff.lo < digit) {
++hi;
}
diff.hi = diff.hi * 10 + hi;
}
else if (found_number) {
return s;
}
}
return s;
}
std::ostream& operator<<(std::ostream& s, const hash& h)
{
char buf[log::Stream::BUF_SIZE + 1];
log::Stream s1(buf);
s1 << h << '\0';
s << buf;
return s;
}
std::istream& operator>>(std::istream& s, hash& h)
{
memset(h.h, 0, HASH_SIZE);
bool found_number = false;
uint32_t index = 0;
char c;
while (s.good() && !s.eof()) {
s.read(&c, 1);
if (!s.good() || s.eof()) {
break;
}
uint8_t digit;
if (from_hex(c, digit)) {
found_number = true;
h.h[index >> 1] = (h.h[index >> 1] << 4) | digit;
++index;
2022-11-24 20:38:15 +00:00
if (index >= HASH_SIZE * 2) {
return s;
}
}
else if (found_number) {
return s;
}
}
return s;
}
2022-07-14 07:02:08 +00:00
void uv_cond_init_checked(uv_cond_t* cond)
{
const int result = uv_cond_init(cond);
if (result) {
LOGERR(1, "failed to create conditional variable, error " << uv_err_name(result));
PANIC_STOP();
2022-07-14 07:02:08 +00:00
}
}
2021-08-22 10:20:59 +00:00
void uv_mutex_init_checked(uv_mutex_t* mutex)
{
const int result = uv_mutex_init(mutex);
if (result) {
LOGERR(1, "failed to create mutex, error " << uv_err_name(result));
PANIC_STOP();
2021-08-22 10:20:59 +00:00
}
}
void uv_rwlock_init_checked(uv_rwlock_t* lock)
{
const int result = uv_rwlock_init(lock);
if (result) {
LOGERR(1, "failed to create rwlock, error " << uv_err_name(result));
PANIC_STOP();
2021-08-22 10:20:59 +00:00
}
}
2022-11-03 18:24:15 +00:00
void uv_async_init_checked(uv_loop_t* loop, uv_async_t* async, uv_async_cb async_cb)
{
const int err = uv_async_init(loop, async, async_cb);
if (err) {
LOGERR(1, "uv_async_init failed, error " << uv_err_name(err));
PANIC_STOP();
2022-11-03 18:24:15 +00:00
}
}
uv_loop_t* uv_default_loop_checked()
{
2021-10-31 13:19:49 +00:00
if (!is_main_thread()) {
LOGERR(1, "uv_default_loop() can only be used by the main thread. Fix the code!");
#ifdef _WIN32
if (IsDebuggerPresent()) {
__debugbreak();
}
#endif
}
return uv_default_loop();
}
struct BackgroundJobTracker::Impl
{
Impl() { uv_mutex_init_checked(&m_lock); }
~Impl() { uv_mutex_destroy(&m_lock); }
void start(const char* name)
{
MutexLock lock(m_lock);
auto it = m_jobs.insert({ name, 1 });
if (!it.second) {
++it.first->second;
}
}
void stop(const char* name)
{
MutexLock lock(m_lock);
auto it = m_jobs.find(name);
if (it == m_jobs.end()) {
LOGWARN(1, "background job " << name << " is not running, but stop() was called");
return;
}
--it->second;
if (it->second <= 0) {
m_jobs.erase(it);
}
}
void wait()
{
2022-11-04 09:14:49 +00:00
uint64_t last_msg_time = 0;
do {
{
MutexLock lock(m_lock);
2023-02-26 19:12:00 +00:00
// cppcheck-suppress knownConditionTrueFalse
2022-11-04 09:14:49 +00:00
if (m_jobs.empty()) {
return;
}
const uint64_t t = seconds_since_epoch();
if (t != last_msg_time) {
last_msg_time = t;
for (const auto& job : m_jobs) {
LOGINFO(1, "waiting for " << job.second << " \"" << job.first << "\" jobs to finish");
}
}
}
2022-11-04 09:14:49 +00:00
std::this_thread::sleep_for(std::chrono::milliseconds(1));
} while (1);
}
2021-08-25 09:31:35 +00:00
void print_status()
{
MutexLock lock(m_lock);
if (m_jobs.empty()) {
LOGINFO(0, "no background jobs running");
return;
}
char buf[log::Stream::BUF_SIZE + 1];
log::Stream s(buf);
for (const auto& job : m_jobs) {
s << '\n' << job.first << " (" << job.second << ')';
}
LOGINFO(0, "background jobs running:" << log::const_buf(buf, s.m_pos));
}
2022-11-04 09:14:49 +00:00
struct Compare { FORCEINLINE bool operator()(const char* a, const char* b) const { return strcmp(a, b) < 0; } };
uv_mutex_t m_lock;
2022-11-04 09:14:49 +00:00
std::map<const char*, int32_t, Compare> m_jobs;
};
BackgroundJobTracker::BackgroundJobTracker() : m_impl(new Impl())
{
}
BackgroundJobTracker::~BackgroundJobTracker()
{
delete m_impl;
}
2022-11-04 09:14:49 +00:00
void BackgroundJobTracker::start_internal(const char* name)
{
m_impl->start(name);
}
2022-11-04 09:14:49 +00:00
void BackgroundJobTracker::stop_internal(const char* name)
{
m_impl->stop(name);
}
void BackgroundJobTracker::wait()
{
m_impl->wait();
}
2021-08-25 09:31:35 +00:00
void BackgroundJobTracker::print_status()
{
m_impl->print_status();
}
BackgroundJobTracker bkg_jobs_tracker;
2021-10-31 13:19:49 +00:00
static thread_local bool main_thread = false;
void set_main_thread() { main_thread = true; }
bool is_main_thread() { return main_thread; }
bool disable_resolve_host = false;
bool resolve_host(std::string& host, bool& is_v6)
{
if (disable_resolve_host) {
LOGERR(1, "resolve_host was called with DNS disabled for host " << host);
return false;
}
addrinfo hints{};
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
2022-05-02 19:24:51 +00:00
hints.ai_flags = AI_ADDRCONFIG;
addrinfo* r = nullptr;
int err = getaddrinfo(host.c_str(), nullptr, &hints, &r);
if (err) {
LOGWARN(4, "getaddrinfo failed for " << host << ": " << gai_strerror(err) << ", retrying with IPv4 only");
hints.ai_family = AF_INET;
err = getaddrinfo(host.c_str(), nullptr, &hints, &r);
}
if ((err == 0) && r) {
const char* addr_str = nullptr;
char addr_str_buf[64];
void* addr;
if (r->ai_family == AF_INET6) {
addr = &reinterpret_cast<sockaddr_in6*>(r->ai_addr)->sin6_addr;
is_v6 = true;
}
else {
addr = &reinterpret_cast<sockaddr_in*>(r->ai_addr)->sin_addr;
is_v6 = false;
}
addr_str = inet_ntop(r->ai_family, addr, addr_str_buf, sizeof(addr_str_buf));
if (addr_str) {
LOGINFO(5, log::LightCyan() << host << log::NoColor() << " resolved to " << log::Gray() << addr_str);
host = addr_str;
}
freeaddrinfo(r);
}
else {
LOGWARN(3, "getaddrinfo failed for " << host << ": " << gai_strerror(err));
return false;
}
return true;
}
2022-03-17 15:14:29 +00:00
RandomDeviceSeed RandomDeviceSeed::instance;
2022-05-09 09:25:52 +00:00
struct BSR8
{
uint8_t data[256];
static constexpr BSR8 init() {
BSR8 result = { 55 };
for (int i = 1; i < 256; ++i) {
int x = i;
result.data[i] = 63;
while (x < 0x80) {
--result.data[i];
x <<= 1;
}
}
return result;
}
};
static constexpr BSR8 bsr8_table = BSR8::init();
NOINLINE uint64_t bsr_reference(uint64_t x)
{
uint32_t y = static_cast<uint32_t>(x);
uint64_t n0 = (x == y) ? 0 : 32;
y = static_cast<uint32_t>(x >> n0);
n0 ^= 32;
const uint64_t n1 = (y & 0xFFFF0000UL) ? 0 : 16;
y <<= n1;
const uint64_t n2 = (y & 0xFF000000UL) ? 0 : 8;
y <<= n2;
return bsr8_table.data[y >> 24] - n0 - n1 - n2;
}
2022-08-31 14:37:33 +00:00
bool str_to_ip(bool is_v6, const char* ip, raw_ip& result)
{
sockaddr_storage addr;
if (is_v6) {
sockaddr_in6* addr6 = reinterpret_cast<sockaddr_in6*>(&addr);
const int err = uv_ip6_addr(ip, 0, addr6);
if (err) {
LOGERR(1, "failed to parse IPv6 address " << ip << ", error " << uv_err_name(err));
return false;
}
memcpy(result.data, &addr6->sin6_addr, sizeof(in6_addr));
}
else {
sockaddr_in* addr4 = reinterpret_cast<sockaddr_in*>(&addr);
const int err = uv_ip4_addr(ip, 0, addr4);
if (err) {
LOGERR(1, "failed to parse IPv4 address " << ip << ", error " << uv_err_name(err));
return false;
}
result = {};
result.data[10] = 0xFF;
result.data[11] = 0xFF;
memcpy(result.data + 12, &addr4->sin_addr, sizeof(in_addr));
}
return true;
}
bool is_localhost(const std::string& host)
{
if (host.empty()) {
return false;
}
if (host.compare("localhost") == 0) {
return true;
}
if (host.find_first_not_of("0123456789.:") != std::string::npos) {
return false;
}
raw_ip addr;
if (!str_to_ip(host.find(':') != std::string::npos, host.c_str(), addr)) {
return false;
}
return addr.is_localhost();
}
2022-06-04 11:16:05 +00:00
UV_LoopUserData* GetLoopUserData(uv_loop_t* loop, bool create)
{
UV_LoopUserData* data = reinterpret_cast<UV_LoopUserData*>(loop->data);
if (!data && create) {
data = new UV_LoopUserData(loop);
loop->data = data;
}
return data;
}
2023-03-19 21:54:18 +00:00
#ifdef WITH_UPNP
static struct UPnP_Discover
{
2023-03-20 09:56:18 +00:00
uv_mutex_t lock;
2023-03-19 21:54:18 +00:00
int error;
UPNPDev* devlist;
} upnp_discover;
2023-03-20 09:56:18 +00:00
void init_upnp()
{
uv_mutex_init_checked(&upnp_discover.lock);
uv_work_t* req = new uv_work_t{};
const int err = uv_queue_work(uv_default_loop_checked(), req,
[](uv_work_t* /*req*/)
{
BACKGROUND_JOB_START(init_upnp);
LOGINFO(1, "UPnP: Started scanning for UPnP IGD devices");
{
MutexLock lock(upnp_discover.lock);
upnp_discover.devlist = upnpDiscover(1000, nullptr, nullptr, UPNP_LOCAL_PORT_ANY, 0, 2, &upnp_discover.error);
}
LOGINFO(1, "UPnP: Finished scanning for UPnP IGD devices");
},
[](uv_work_t* req, int /*status*/)
{
delete req;
BACKGROUND_JOB_STOP(init_upnp);
}
);
if (err) {
LOGERR(0, "init_upnp: uv_queue_work failed, error " << uv_err_name(err));
delete req;
}
}
void destroy_upnp()
{
{
MutexLock lock(upnp_discover.lock);
freeUPNPDevlist(upnp_discover.devlist);
upnp_discover.devlist = nullptr;
}
uv_mutex_destroy(&upnp_discover.lock);
}
2023-03-21 09:19:56 +00:00
int add_portmapping(int external_port, int internal_port)
2023-03-19 21:54:18 +00:00
{
LOGINFO(1, "UPnP: trying to map WAN:" << external_port << " to LAN:" << internal_port);
2023-03-20 09:56:18 +00:00
MutexLock lock(upnp_discover.lock);
2023-03-19 21:54:18 +00:00
if (!upnp_discover.devlist) {
LOGWARN(1, "upnpDiscover: no UPnP IGD devices found, error " << upnp_discover.error);
2023-03-21 09:19:56 +00:00
return 0;
2023-03-19 21:54:18 +00:00
}
UPNPUrls urls;
IGDdatas data;
char local_addr[64] = {};
int result = UPNP_GetValidIGD(upnp_discover.devlist, &urls, &data, local_addr, sizeof(local_addr));
if (result != 1) {
LOGWARN(1, "UPNP_GetValidIGD returned " << result << ", no valid UPnP IGD devices found");
2023-03-21 09:19:56 +00:00
return 0;
2023-03-19 21:54:18 +00:00
}
LOGINFO(1, "UPnP: LAN IP address " << log::Gray() << static_cast<const char*>(local_addr));
char ext_addr[64] = {};
result = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, ext_addr);
if ((result != UPNPCOMMAND_SUCCESS) || !ext_addr[0]) {
LOGWARN(1, "UPNP_GetExternalIPAddress: failed to query external IP address, error " << result);
}
else {
LOGINFO(1, "UPnP: WAN IP address " << log::Gray() << static_cast<const char*>(ext_addr));
}
const std::string eport = std::to_string(external_port);
const std::string iport = std::to_string(internal_port);
result = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, eport.c_str(), iport.c_str(), local_addr, "P2Pool", "TCP", nullptr, nullptr);
2023-03-20 21:13:12 +00:00
// ConflictInMappingEntry: try to delete the old record and then add the new one again
if (result == 718) {
LOGWARN(1, "UPNP_AddPortMapping failed: ConflictInMappingEntry");
result = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, eport.c_str(), "TCP", nullptr);
if (result) {
LOGWARN(1, "UPNP_DeletePortMapping returned error " << result);
2023-03-21 09:19:56 +00:00
return 0;
2023-03-20 21:13:12 +00:00
}
else {
LOGINFO(1, "UPnP: Deleted mapping for external port " << external_port);
result = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, eport.c_str(), iport.c_str(), local_addr, "P2Pool", "TCP", nullptr, nullptr);
}
}
2023-03-19 21:54:18 +00:00
if (result) {
LOGWARN(1, "UPNP_AddPortMapping returned error " << result);
2023-03-21 09:19:56 +00:00
return 0;
}
LOGINFO(1, "UPnP: Mapped " << log::Gray() << static_cast<const char*>(ext_addr) << ':' << external_port << log::NoColor() << " to " << log::Gray() << static_cast<const char*>(local_addr) << ':' << internal_port);
return external_port;
}
void remove_portmapping(int external_port)
{
LOGINFO(1, "UPnP: trying to delete mapping for external port " << external_port);
MutexLock lock(upnp_discover.lock);
if (!upnp_discover.devlist) {
LOGWARN(1, "upnpDiscover: no UPnP IGD devices found, error " << upnp_discover.error);
return;
}
UPNPUrls urls;
IGDdatas data;
char local_addr[64] = {};
int result = UPNP_GetValidIGD(upnp_discover.devlist, &urls, &data, local_addr, sizeof(local_addr));
if (result != 1) {
LOGWARN(1, "UPNP_GetValidIGD returned " << result << ", no valid UPnP IGD devices found");
return;
}
const std::string eport = std::to_string(external_port);
result = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, eport.c_str(), "TCP", nullptr);
if (result) {
LOGWARN(1, "UPNP_DeletePortMapping returned error " << result);
2023-03-19 21:54:18 +00:00
}
else {
2023-03-21 09:19:56 +00:00
LOGINFO(1, "UPnP: Deleted mapping for external port " << external_port);
2023-03-19 21:54:18 +00:00
}
}
#endif
2023-03-30 17:09:15 +00:00
NOINLINE PerfTimer::~PerfTimer()
{
using namespace std::chrono;
const duration<double, std::milli> dt = high_resolution_clock::now() - m_start;
LOGINFO(m_level, m_name << " took " << dt.count() << " ms");
}
2021-08-22 10:20:59 +00:00
} // namespace p2pool