monero-lws/tests/unit/wire/read.write.test.cpp
2023-04-05 10:16:50 -04:00

265 lines
8.3 KiB
C++

// Copyright (c) 2022-2023, The Monero Project
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "framework.test.h"
#include <boost/core/demangle.hpp>
#include <cstdint>
#include <limits>
#include <string>
#include <vector>
#include "wire.h"
#include "wire/json.h"
#include "wire/msgpack.h"
#include "wire/vector.h"
#include "wire/base.test.h"
namespace
{
template<typename T>
using limit = std::numeric_limits<T>;
struct inner
{
std::uint32_t left;
std::uint32_t right;
};
template<typename F, typename T>
void inner_map(F& format, T& self)
{
wire::object(format, WIRE_FIELD(left), WIRE_FIELD(right));
}
WIRE_DEFINE_OBJECT(inner, inner_map)
struct complex
{
std::vector<inner> objects;
std::vector<std::int16_t> ints;
std::vector<std::uint64_t> uints;
std::vector<lws_test::small_blob> blobs;
std::vector<std::string> strings;
bool choice;
};
template<typename F, typename T>
void complex_map(F& format, T& self)
{
wire::object(format,
WIRE_FIELD(objects),
WIRE_FIELD(ints),
WIRE_FIELD(uints),
WIRE_FIELD(blobs),
WIRE_FIELD(strings),
WIRE_FIELD(choice)
);
}
WIRE_DEFINE_OBJECT(complex, complex_map)
void verify_initial(lest::env& lest_env, const complex& self)
{
EXPECT(self.objects.empty());
EXPECT(self.ints.empty());
EXPECT(self.uints.empty());
EXPECT(self.blobs.empty());
EXPECT(self.strings.empty());
EXPECT(self.choice == false);
}
void fill(complex& self)
{
self.objects = std::vector<inner>{inner{0, limit<std::uint32_t>::max()}, inner{100, 200}, inner{44444, 83434}};
self.ints = std::vector<std::int16_t>{limit<std::int16_t>::min(), limit<std::int16_t>::max(), -3, 31234};
self.uints = std::vector<std::uint64_t>{0, limit<std::uint64_t>::max(), 34234234, 33};
self.blobs = {lws_test::blob_test1, lws_test::blob_test2, lws_test::blob_test3};
self.strings = {"string1", "string2", "string3", "string4"};
self.choice = true;
}
void verify_filled(lest::env& lest_env, const complex& self)
{
EXPECT(self.objects.size() == 3);
EXPECT(self.objects.at(0).left == 0);
EXPECT(self.objects.at(0).right == limit<std::uint32_t>::max());
EXPECT(self.objects.at(1).left == 100);
EXPECT(self.objects.at(1).right == 200);
EXPECT(self.objects.at(2).left == 44444);
EXPECT(self.objects.at(2).right == 83434);
EXPECT(self.ints.size() == 4);
EXPECT(self.ints.at(0) == limit<std::int16_t>::min());
EXPECT(self.ints.at(1) == limit<std::int16_t>::max());
EXPECT(self.ints.at(2) == -3);
EXPECT(self.ints.at(3) == 31234);
EXPECT(self.uints.size() == 4);
EXPECT(self.uints.at(0) == 0);
EXPECT(self.uints.at(1) == limit<std::uint64_t>::max());
EXPECT(self.uints.at(2) == 34234234);
EXPECT(self.uints.at(3) == 33);
EXPECT(self.blobs.size() == 3);
EXPECT(self.blobs.at(0) == lws_test::blob_test1);
EXPECT(self.blobs.at(1) == lws_test::blob_test2);
EXPECT(self.blobs.at(2) == lws_test::blob_test3);
EXPECT(self.strings.size() == 4);
EXPECT(self.strings.at(0) == "string1");
EXPECT(self.strings.at(1) == "string2");
EXPECT(self.strings.at(2) == "string3");
EXPECT(self.strings.at(3) == "string4");
EXPECT(self.choice == true);
}
template<typename T, typename U>
void run_complex(lest::env& lest_env)
{
SETUP("Complex test for " + boost::core::demangle(typeid(T).name()))
{
complex base{};
verify_initial(lest_env, base);
{
const expect<epee::byte_slice> bytes = T::to_bytes(base);
EXPECT(bytes);
const expect<complex> derived = T::template from_bytes<complex>(U{std::string{bytes->begin(), bytes->end()}});
EXPECT(derived);
verify_initial(lest_env, *derived);
}
fill(base);
{
const expect<epee::byte_slice> bytes = T::to_bytes(base);
EXPECT(bytes);
const expect<complex> derived = T::template from_bytes<complex>(U{std::string{bytes->begin(), bytes->end()}});
EXPECT(derived);
verify_filled(lest_env, *derived);
}
}
}
struct big { std::int64_t value; };
struct small { std::int32_t value; };
template<typename F, typename T>
void big_map(F& format, T& self)
{ wire::object(format, WIRE_FIELD(value)); }
template<typename F, typename T>
void small_map(F& format, T& self)
{ wire::object(format, WIRE_FIELD(value)); }
WIRE_DEFINE_OBJECT(big, big_map)
WIRE_DEFINE_OBJECT(small, small_map)
template<typename T, typename U>
expect<small> round_trip(lest::env& lest_env, std::int64_t value)
{
expect<small> out = small{0};
SETUP("Testing round-trip with " + std::to_string(value))
{
const expect<epee::byte_slice> bytes = T::template to_bytes(big{value});
EXPECT(bytes);
out = T::template from_bytes<small>(U{std::string{bytes->begin(), bytes->end()}});
}
return out;
}
template<typename T, typename U>
void not_overflow(lest::env& lest_env, std::int64_t value)
{
const expect<small> result = round_trip<T, U>(lest_env, value);
EXPECT(result);
EXPECT(result->value == value);
}
template<typename T, typename U>
void overflow(lest::env& lest_env, std::int64_t value, const std::error_code error)
{
const expect<small> result = round_trip<T, U>(lest_env, value);
EXPECT(result == error);
}
template<typename T, typename U>
void run_overflow(lest::env& lest_env)
{
SETUP("Overflow test for " + boost::core::demangle(typeid(T).name()))
{
not_overflow<T, U>(lest_env, limit<std::int32_t>::min());
not_overflow<T, U>(lest_env, 0);
not_overflow<T, U>(lest_env, limit<std::int32_t>::max());
overflow<T, U>(lest_env, std::int64_t(limit<std::int32_t>::min()) - 1, wire::error::schema::larger_integer);
overflow<T, U>(lest_env, std::int64_t(limit<std::int32_t>::max()) + 1, wire::error::schema::smaller_integer);
}
}
struct simple { bool choice; };
static void read_bytes(wire::reader& source, simple& self)
{
wire::object(source, WIRE_FIELD(choice));
}
template<typename T, typename U>
void run_skip(lest::env& lest_env)
{
complex base{};
verify_initial(lest_env, base);
fill(base);
const expect<epee::byte_slice> bytes = T::to_bytes(base);
EXPECT(bytes);
const expect<simple> derived = T::template from_bytes<simple>(U{std::string{bytes->begin(), bytes->end()}});
EXPECT(derived);
EXPECT(derived->choice);
}
}
LWS_CASE("wire::reader and wire::writer complex")
{
run_complex<wire::json, std::string>(lest_env);
run_complex<wire::msgpack, epee::byte_slice>(lest_env);
}
LWS_CASE("wire::reader and wire::writer overflow")
{
run_overflow<wire::json, std::string>(lest_env);
run_overflow<wire::msgpack, epee::byte_slice>(lest_env);
}
LWS_CASE("wire::reader and wire::writer skip")
{
run_skip<wire::json, std::string>(lest_env);
run_skip<wire::msgpack, epee::byte_slice>(lest_env);
}