// Copyright (c) 2022-2023, The Monero Project // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "framework.test.h" #include #include #include #include #include #include "wire.h" #include "wire/json.h" #include "wire/msgpack.h" #include "wire/vector.h" #include "wire/base.test.h" namespace { template using limit = std::numeric_limits; struct inner { std::uint32_t left; std::uint32_t right; }; template void inner_map(F& format, T& self) { wire::object(format, WIRE_FIELD(left), WIRE_FIELD(right)); } WIRE_DEFINE_OBJECT(inner, inner_map) struct complex { std::vector objects; std::vector ints; std::vector uints; std::vector blobs; std::vector strings; bool choice; }; template void complex_map(F& format, T& self) { wire::object(format, WIRE_FIELD(objects), WIRE_FIELD(ints), WIRE_FIELD(uints), WIRE_FIELD(blobs), WIRE_FIELD(strings), WIRE_FIELD(choice) ); } WIRE_DEFINE_OBJECT(complex, complex_map) void verify_initial(lest::env& lest_env, const complex& self) { EXPECT(self.objects.empty()); EXPECT(self.ints.empty()); EXPECT(self.uints.empty()); EXPECT(self.blobs.empty()); EXPECT(self.strings.empty()); EXPECT(self.choice == false); } void fill(complex& self) { self.objects = std::vector{inner{0, limit::max()}, inner{100, 200}, inner{44444, 83434}}; self.ints = std::vector{limit::min(), limit::max(), -3, 31234}; self.uints = std::vector{0, limit::max(), 34234234, 33}; self.blobs = {lws_test::blob_test1, lws_test::blob_test2, lws_test::blob_test3}; self.strings = {"string1", "string2", "string3", "string4"}; self.choice = true; } void verify_filled(lest::env& lest_env, const complex& self) { EXPECT(self.objects.size() == 3); EXPECT(self.objects.at(0).left == 0); EXPECT(self.objects.at(0).right == limit::max()); EXPECT(self.objects.at(1).left == 100); EXPECT(self.objects.at(1).right == 200); EXPECT(self.objects.at(2).left == 44444); EXPECT(self.objects.at(2).right == 83434); EXPECT(self.ints.size() == 4); EXPECT(self.ints.at(0) == limit::min()); EXPECT(self.ints.at(1) == limit::max()); EXPECT(self.ints.at(2) == -3); EXPECT(self.ints.at(3) == 31234); EXPECT(self.uints.size() == 4); EXPECT(self.uints.at(0) == 0); EXPECT(self.uints.at(1) == limit::max()); EXPECT(self.uints.at(2) == 34234234); EXPECT(self.uints.at(3) == 33); EXPECT(self.blobs.size() == 3); EXPECT(self.blobs.at(0) == lws_test::blob_test1); EXPECT(self.blobs.at(1) == lws_test::blob_test2); EXPECT(self.blobs.at(2) == lws_test::blob_test3); EXPECT(self.strings.size() == 4); EXPECT(self.strings.at(0) == "string1"); EXPECT(self.strings.at(1) == "string2"); EXPECT(self.strings.at(2) == "string3"); EXPECT(self.strings.at(3) == "string4"); EXPECT(self.choice == true); } template void run_complex(lest::env& lest_env) { SETUP("Complex test for " + boost::core::demangle(typeid(T).name())) { complex base{}; verify_initial(lest_env, base); { epee::byte_slice bytes{}; EXPECT(!T::to_bytes(bytes, base)); complex derived{}; EXPECT(!T::template from_bytes(U{std::string{bytes.begin(), bytes.end()}}, derived)); verify_initial(lest_env, derived); } fill(base); { epee::byte_slice bytes{}; EXPECT(!T::to_bytes(bytes, base)); complex derived{}; EXPECT(!T::template from_bytes(U{std::string{bytes.begin(), bytes.end()}}, derived)); verify_filled(lest_env, derived); } } } struct big { std::int64_t value; }; struct small { std::int32_t value; }; template void big_map(F& format, T& self) { wire::object(format, WIRE_FIELD(value)); } template void small_map(F& format, T& self) { wire::object(format, WIRE_FIELD(value)); } WIRE_DEFINE_OBJECT(big, big_map) WIRE_DEFINE_OBJECT(small, small_map) template expect round_trip(lest::env& lest_env, std::int64_t value) { small out{0}; SETUP("Testing round-trip with " + std::to_string(value)) { epee::byte_slice bytes{}; EXPECT(!T::template to_bytes(bytes, big{value})); const std::error_code error = T::template from_bytes(U{std::string{bytes.begin(), bytes.end()}}, out); if (error) return error; } return out; } template void not_overflow(lest::env& lest_env, std::int64_t value) { const expect result = round_trip(lest_env, value); EXPECT(result); EXPECT(result->value == value); } template void overflow(lest::env& lest_env, std::int64_t value, const std::error_code error) { const expect result = round_trip(lest_env, value); EXPECT(result == error); } template void run_overflow(lest::env& lest_env) { SETUP("Overflow test for " + boost::core::demangle(typeid(T).name())) { not_overflow(lest_env, limit::min()); not_overflow(lest_env, 0); not_overflow(lest_env, limit::max()); overflow(lest_env, std::int64_t(limit::min()) - 1, wire::error::schema::larger_integer); overflow(lest_env, std::int64_t(limit::max()) + 1, wire::error::schema::smaller_integer); } } struct simple { bool choice; }; static void read_bytes(wire::reader& source, simple& self) { wire::object(source, WIRE_FIELD(choice)); } template void run_skip(lest::env& lest_env) { complex base{}; verify_initial(lest_env, base); fill(base); epee::byte_slice bytes{}; EXPECT(!T::to_bytes(bytes, base)); simple derived{}; EXPECT(!T::template from_bytes(U{std::string{bytes.begin(), bytes.end()}}, derived)); EXPECT(derived.choice); } } LWS_CASE("wire::reader and wire::writer complex") { run_complex(lest_env); run_complex(lest_env); } LWS_CASE("wire::reader and wire::writer overflow") { run_overflow(lest_env); run_overflow(lest_env); } LWS_CASE("wire::reader and wire::writer skip") { run_skip(lest_env); run_skip(lest_env); }