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Abstract6

On March 4, 2024, aggregate Monero transaction volume suddenly almost tripled. This note an-7

alyzes the effect of the large number of transactions, assuming that the transaction volume is an8

attempted black marble flooding attack by an adversary. According to my estimates, mean effective9

ring size has decreased from 16 to 5.5 if the black marble flooding hypothesis is correct. At current10

transaction volumes, the suspected spam transactions probably cannot be used for large-scale “chain re-11

action” analysis to eliminate all ring members except for the real spend. Effects of increasing Monero’s12

ring size above 16 are analyzed.13
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1 March 4, 2024: Sudden transaction volume14

Figure 1: Volume of Monero transactions with spam fingerprint

On March 4, 2024 at approximately block height 3097764 (15:21:24 UTC), the number of 1input/2output15

minimum fee (20 nanoneros/byte) transactions sent to the Monero network rapidly increased. Figure 116

shows daily volume of this type of transaction increasing from about 15,000 to over 100,000.17

The large volume of these transactions was enough to entirely fill the 300 kB Monero blocks mined18

about every two minutes. Monero’s dynamic block size algorithm activated. The 100 block rolling median19

block size slowly increased to adjust for the larger number of transactions that miners could pack in blocks.20

Figure 2 shows the adjustment. The high transaction volume raised the 100 block median gradually for21

period of time. Then the transaction volume reduced just enough to allow the 100 block median to reset to22

a lower level. Then the process would restart. Block sizes have usually remained between 300 kB and 40023

kB. Occasionally, high-fee transactions would allow miners to get more total revenue by giving up some24

of the 0.6 XMR/block tail emission and including more transactions in a block. The “maximum peaks”25

plot shows this phenomenon.26
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Figure 2: Monero empirical block weight

The sudden transaction volume rise may originate from a single entity. The motive may be spamming27

transactions to bloat the blockchain size, increase transaction confirmation times for real users, perform28

a network stress test, or execute a black marble flooding attack to reduce the privacy of Monero users. I29

will focus most of my analysis on the last possibility.30

2 Literature review31

The very first research bulletin released by the Monero Research Lab described black marble transaction32

flooding. [Noether et al., 2014] points out that the ring signature privacy model requires rings to contain33

transaction outputs that are could be plausible real spends. If a single entity owns a large share of outputs34

(spent or not), it can use its knowledge to rule out ring members in other users’ transactions that cannot35

be the real spend. Since the entity knows that itself did not spend the output(s) in a particular ring, the36

effective ring size that protects other users’ privacy can be reduced — even to an effective ring size of 137

when the entity knows the real spend with certainty. Rings with known real spends can be leveraged to38

determine the real spend in other rings in a “chain reaction” attack.39

[Noether et al., 2014] gave the name “black marble” to the outputs owned by an anti-privacy adversary40

since they modeled the problem using a marble draw problem with a hypergeometric distribution. When41

a specific number of marbles are drawn without replacement from an urn containing a specific number of42
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white and black marbles, the hypergeometric distribution describes the probability of drawing a specific43

number of black marbles. In my modeling I use the binomial distribution, which is the same as the44

hypergeometric except marbles are drawn with replacement. The binomial distribution makes more sense45

now ten years after [Noether et al., 2014] was written. The total number of RingCT outputs on the46

blockchain that can be included in a ring is over 90 million. The hypergeometric distribution converges to47

the binomial distribution as the total number of marbles increases to infinity. Moreover, Monero’s current48

decoy selection algorithm does not select all outputs with equal probability. More recent outputs are49

selected with much higher probability. The hypergeometric distribution cannot be used when individual50

marbles have unequal probability of being selected.51

[Chervinski et al., 2021] simulates a realistic black marble flood attack. They consider two scenarios.52

The adversary could create 2input/16output transactions to maximize the number of black marble outputs53

per block or the adversary could create 2input/2output transactions to make the attack less obvious. The54

paper uses Monero transaction data from 2020 to set the estimated number of real outputs and kB per55

block at 41 outputs and 51 kB respectively. The nominal ring size at this time was 11. The researchers56

simulated filling the remaining 249 kB of the 300 kB block with black marble transactions. A “chain57

reaction” algorithm was used to boost the effectiveness of the attack. In the 2in/2out scenario, the real58

spend could be deduced (effective ring size 1) in 11% of rings after one month of spamming black marbles.59

Later I will compare the results of this simulation with the current suspected spam incident.60

[Krawiec-Thayer et al., 2021] analyze a suspected spam incident in July-August 2021. Transactions’61

inputs, outputs, fees, and ring member ages were plotted to evaluate evidence that a single entity created62

the spam. The analysis concluded, “All signs point towards a single entity. While transaction homogeneity63

is a strong clue, a the [sic] input consumption patterns are more conclusive. In the case of organic growth64

due to independent entities, we would expect the typically semi-correlated trends across different input65

counts, and no correlation between independent users’ wallets. During the anomaly, we instead observed66

an extremely atypical spike in 1–2 input txns with no appreciable increase in 4+ input transactions.”67

TODO: A few papers like [Ronge et al., 2021, Egger et al., 2022] discuss black marble attacks too.68

3 Black marble theory69

The binomial distribution describes the probability of drawing x number of “successful” items when drawing70

a total of n items when the probability of a successful draw is p. It can be used to model the number71

of transaction outputs selected by the decoy selection algorithm that are not controlled by a suspected72

adversary.73

The probability mass function of the binomial distribution with n ∈ {0, 1, 2, . . .} number of draws and74

p ∈ [0, 1] probability of success is75
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The expected value (the theoretical mean) of a random variable with a binomial distribution is np.76

Monero’s standard decoy selection algorithm programmed in wallet2 does not select outputs with77

equal probability. The probability of selecting each output depends on the age of the output. Specifics78

are in [Rucknium, 2023]. The probability of a single draw selecting an output that is not owned by79

the adversary, pr, is equal to the share of the probability mass function occupied by those outputs:80

pr =
∑

i∈R g(i), where R is the set of outputs owned by real users and g(x) is the probability mass81

function of the decoy selection algorithm.82

3.1 Spam assumptions83

There is some set of criteria that identifies suspected spam. The early March 2024 suspected spam trans-84

actions: 1) have one input; 2) have two outputs; 3) pay the minimum 20 nanoneros per byte transaction85

fee. The normal volume of these transactions produced by real users must be estimated. The volume in86

excess of the normal volume is assumed to be spam. I followed this procedure:87

1. Compute the mean number of daily transactions that fit the suspected spam criteria for the four88

weeks that preceded the suspected spam incident. A separate mean was calculated for each day89

of the week (Monday, Tuesday,...) because Monero transaction volumes have weekly cycles. These90

volume means are denoted vr,m, vr,t, vr,w, . . . for the days of the week.91

2. For each day of the suspected spam interval, sum the number of transactions that fit the suspected92

spam criteria. Subtract the amounts found in step (1) from this sum, matching on the day of the93

week. This provides the estimated number of spam transactions for each day: vs,1, vs,2, vs,3, . . .94

3. For each day of the suspected spam interval, randomly select vs,t transactions from the set of trans-95

actions that fit the suspected spam criteria, without replacement. This randomly selected set is96

assumed to be the true spam transactions.97

4. During the period of time of the spam incident, compute the expected probability pr that one output98

drawn from the wallet2 decoy distribution will select an output owned by a real user (instead of99

the adversary) when the wallet constructs a ring at the point in time when the blockchain tip is at100

height h. The closed-form formula of the wallet2 decoy distribution is in [Rucknium, 2023].101

5. The expected effective ring size of each ring constructed at block height h is 1+15·pr. The coefficient102

on pr is the number of decoys.103

Figure 3 shows the results of this methodology. The mean effective ring size settled at about 5.5 by the104

fifth day of the large transaction volume. On March 12 and 13 there was a large increase in the number105
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of 1input/2output transactions that paid 320 nanoneros/byte (the third fee tier). This could have been106

the spammer switching fee level temporarily or a service that uses Monero increasing fees to avoid delays.107

I used the same method to estimate the spam volume of these 320 nanoneros/byte suspected spam. The108

1in/2out 320 nanoneros/byte transactions displaced some of the 1in/2out 20 nanoneros/byte transactions109

because miners preferred to put transactions with higher fees into blocks. Other graphs and analysis will110

consider only the 1in/2out 20 nanoneros/byte transactions as spam unless indicated otherwise.111

Figure 3: Estimated mean effective ring size

Figure 4 shows the daily share of outputs on the blockchain that are owned by the suspected spammer.112

The mean share of outputs since the suspected spam started is about 75 percent.113
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Figure 4: Spam share of outputs

3.2 Long term projection scenarios at different ring sizes114

Fix the number of outputs owned by real users at r. The analysis will let the number s of outputs owned115

by the adversary vary. The share of outputs owned by real users is116

pr =
r

r + s
(2)

The 2 expression can be written pr = 1
r · r

1 + 1
rs

, which is the formula for hyperbolic decay with the117

additional 1
r coefficient at the beginning of the expression [Aguado et al., 2010].118

Let n be the nominal ring size (16 in Monero version 0.18). The number of decoys chosen by the decoy119

selection algorithm is n− 1. The mean effective ring size for a real user’s ring is one (the real spend) plus120

the ring’s expected number of decoys owned by other real users.121

E [ne] = 1 + (n− 1) · r

r + s
(3)

The empirical analysis of Section 3.1 considered the fact that the wallet2 decoy selection algorithm122

draws a small number of decoys from the pre-spam era. Now we will assume that the spam incident has123

continued for a very long time and all but a negligible number of decoys are selected from the spam era.124

We will hold constant the non-spam transactions and vary the number of spam transactions and the ring125
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size. Figures 5, 6, and 7 show the results of the simulations.126

Figure 5: Long-term projected mean effective ring size
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Figure 6: Long-term projected mean effective ring size (log-log scale)

Figure 7: Long-term projected share of rings with effective ring size 1
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3.3 Guessing the real spend using a black marble flooder’s simple classifier127

The adversary carrying out a black marble flooding attack could use a simple classifier to try to guess the128

real spend: Let n be nominal ring size and ns be the number of outputs in a given ring that are owned129

by the attacker. ns is a random variable because decoy selection is a random process. The adversary130

can eliminate ns of the n ring members as possible real spends. The attacker guesses randomly with131

uniform probability that the ith ring member of the n−ns remaining ring members is the real spend. The132

probability of correctly guessing the real spend is 1
n−ns

. If the adversary owns all ring members except133

for one ring member, which must be the real spend, the probability of correctly guessing the real spend134

is 100%. If the adversary owns all except two ring members, the probability of correctly guessing is 50%.135

And so forth.136

The mean effective ring size is E [ne] from 3. Does this mean that the mean probability of correctly137

guessing the real spend is 1
E[ne]

? No. The h(x) = 1
x function is strictly convex. By Jensen’s inequality,138

E
[

1
ne

]
> 1

E[ne]
. The mean probability of correctly guessing the real spend is139

E

[
1

ne

]
=

n∑
i=1

1

i
· f(i− 1, n− 1,

E [ne]− 1

n− 1
) (4)

1
i is the probability of correctly guessing the real spend when the effective ring size is i. f is the140

probability mass function of the binomial distribution. It calculates the probability of the decoy selection141

algorithm selecting i−1 decoys that are owned by real users. The total number of decoys to select is n−1142

(that is the argument in the second position of f). The probability of selecting a decoy owned by a real143

user is E[ne]−1
n−1 = r

r+s .144
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Figure 8: Estimated probability of correctly guessing the real spend

The probability of a given ring having all adversary-owned ring members except for the real spend is145

f
(
0, n− 1, E[ne]−1

n−1

)
. Figure 9 plots the estimated share of rings with effective ring size one.146
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Figure 9: Estimated share of rings with effective ring size of one

4 Chain reaction graph attacks147

The effective ring size can be reduced further by applying a process of elimination to related rings. This148

technique is called a “chain reaction” or a “graph analysis attack”. Say that the effective ring size in149

transaction A is reduced to two because of a black marble attack. One of the remaining two ring members150

is an output in transaction B. If the output in transaction B is known to be spent in transaction C151

because the effective ring size of transaction C was one, then that output can be ruled out as a plausible152

real spend in transaction A. Therefore, the adversary can reduce the effective ring size of transaction A153

to one.154

Theorem 1 of [Yu et al., 2019] says that a “closed set” attack is as effective as exhaustively checking155

all subsets of outputs. The brute force attack is infeasible since its complexity is O (2m), where m is the156

total number of RingCT outputs on the blockchain. [Yu et al., 2019] implements a heuristic algorithm to157
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execute the closed set attack that is almost as effective as the brute force method. [Vijayakumaran, 2023]158

proves that the Dulmage-Mendelsohn (DM) decomposition gives the same results as the brute force closed159

set attack, but the algorithm renders a result in polynomial time. The open source implementation of the160

DM decomposition in [Vijayakumaran, 2023] processes 37 million RingCT rings in about four hours.161

In practice, how much further can chain reaction attacks reduce the effective ring size when combined162

with a black marble attack? [Egger et al., 2022] suggest some closed-form formulas to compute the vulner-163

ability of different ring sizes to chain reaction attacks. However, [Egger et al., 2022] assume that decoys164

are selected by a partitioning process instead of Monero’s actual mimicking decoy selection algorithm.165

It is not clear how relevant the findings of [Egger et al., 2022] are for Monero’s mainnet. Monte Carlo166

simulations would be a better way to evaluate the risk of chain reactions.167

[Chervinski et al., 2021] carries out a simulation using the old ring size of 11. In the 2input/2output168

spam scenario, 82% of outputs are black marbles. Assuming only the binomial distribution, i.e. no169

chain reaction analysis, Figure 10 compares the theoretical long-term distribution of effective ring sizes170

in the [Chervinski et al., 2021] scenario and the March 2024 suspected spam on Monero’s mainnet. The171

share of rings with effective ring size 1 in the [Chervinski et al., 2021] scenario is 11.9 percent, but the172

share is only 0.8 percent with the suspected March 2024 spam. The mean effective ring sizes of the173

[Chervinski et al., 2021] scenario without chain reaction and the March 2024 spam estimate are 2.9 and174

5.2, respectively.175

Figure 10: Probability mass function of long-term effective ring sizes
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[Chervinski et al., 2021] executes chain reaction analysis to increase the effectiveness of the attack. The176

second plot in Figure 10 compares the long term effective ring size achieved by [Chervinski et al., 2021]177

when leveraging chain reaction analysis and the effective ring size when only the binomial distribution is178

assumed. [Chervinski et al., 2021] increases the share of ring with effective ring size one from 11.9 to 14.5179

percent. Mean effective ring size decreases from 2.94 to 2.76. This is a modest gain of attack effectiveness,180

but [Chervinski et al., 2021] appears to be using a suboptimal chain reaction algorithm instead of the181

closed set attack.182

The actual risk from chain reaction analysis in the suspected March 2024 flooding is a gap in our183

knowledge. [Vijayakumaran, 2023] provides an open source implementation of the DM decomposition in184

Rust and excellent documentation.1 A Monte Carlo simulation applying the DM decomposition to the185

March 2024 black marble estimates should be written.186

5 Countermeasures187

See https://github.com/monero-project/research-lab/issues/119188

TODO189

6 Estimated cost to suspected spammer190

When the 1in/2out 20 nanoneros/byte spam definition is used, the total fees paid by the spam transactions191

over the 23 days of spam was 61.5 XMR. The sum total of the transaction sizes of the spam transactions192

was 3.08 GB.193

When the 1in/2out 20 or 320 nanoneros/byte spam definition is used, the total fees paid by the spam194

transactions over the 23 days of spam was 81.3 XMR. The sub total of the transaction sizes of the spam195

transactions was 3.12 GB.196

7 Transaction confirmation delay197

Monero’s transaction propagation rules are different from BTC’s rules for good reasons, but two of the198

rules can make transactions seem like they are “stuck” when the txpool (mempool) is congested. First,199

Monero does not have replace-by-fee (RBF). When a Monero node sees that a transaction attempts to200

spend an output that is already spent by another transaction in the txpool, the node does not send the201

transaction to other nodes because it is an attempt to double spend the output. (Monero nodes do not202

know the real spend in the ring, but double spends can be detected by comparing the key images of203

ring signatures in different transactions.) Monero users cannot increase the fee of a transaction that they204

1https://github.com/avras/cryptonote-analysis
https://www.respectedsir.com/cna
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already sent to a node because the transaction with the higher fee would be considered a double spend.205

BTC has RBF that allows a transaction to replace a transaction in the mempool that spends the same206

output if the replacement transaction pays a higher fee. One of RBF’s downsides is that merchants cannot207

safely accept zero-confirmation transactions because a malicious customer can replace the transaction in208

the mempool with a higher-fee transaction that spends the output back to themselves. Without RBF,209

Monero users must wait for their low-fee transaction to confirm on the blockchain. They cannot choose to210

raise their “bid” for block space even if they were willing to pay more. They have to get it right the first211

time. Fee prediction is especially important for Monero users when the txpool is congested because of the212

lack of RBF, but very little Monero-specific fee prediction research has been done.213

Unlike BTC, Monero also does not have child-pays-for-parent (CPFP), which allows users to chain214

multiple transactions together while they are still in the mempool. With CPFP, users can spend the215

output of the unconfirmed parent transaction and attach a higher fee to the child transaction. Miners216

have an incentive to include the parent transaction in the block because the child transaction is only217

valid if the parent transaction is also mined in a block. Monero transaction outputs cannot be spent in218

the same block that they are confirmed in. Actually, Monero users need to wait at least ten blocks to219

spend new transaction outputs because benign or malicious blockchain reorganizations can invalidate ring220

signatures.2221

Monero’s transaction propagation rules can create long delays for users who pay the same minimum222

fee that the suspected spammer pays. When users pay the same fee as the spam, their transactions are223

put in a “queue” with other transactions at the same fee per byte level. Their transactions are confirmed224

in first-in/first-out order because the get_block_template RPC call to monerod arranges transactions225

that way.3 Most miners use get_block_template to construct blocks, but P2Pool orders transactions226

randomly after they have been sorted by fee per byte.4227

The first plot in Figure 11 shows the mean delay of transaction confirmation in each hour. The228

plot shows the mean time that elapsed between when the transaction entered the txpool and when it was229

confirmed in a block. Each hour’s value in the line plot is computed from transactions that were confirmed230

in blocks in that hour. This data is based on txpool archive data actively collected from a few nodes.5231

The mean includes transactions with and without the spam fingerprint. Usually mean confirmation time232

was less than 30 minutes, but sometimes confirmations of the average transaction were delayed by over233

two hours.234

2“Eliminating the 10-block-lock” https://github.com/monero-project/research-lab/issues/95
3https://github.com/monero-project/monero/blob/9bf06ea75de4a71e3ad634e66a5e09d0ce021b67/src/

cryptonote_core/tx_pool.cpp#L1596
4https://github.com/SChernykh/p2pool/blob/dd17372ec0f64545311af40b976e6274f625ddd8/src/block_template.

cpp#L194
5https://github.com/Rucknium/misc-research/tree/main/Monero-Mempool-Archive
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Figure 11: Delay to first transaction confirmation

The second plot in Figure 11 shows the maximum waiting time for a transaction to be confirmed. The235

value of the line at each hour is the longest time that a transaction waited to be confirmed in one of the236

block mined in the hour or the amount of time that a transaction was still waiting to be confirmed at the237

end of the hour (whichever is greater). There were a handful of transactions that paid fees below the 20238

nanoneros/byte tier that the spam was paying. These transactions did not move forward in the queue when239

the spam transactions were confirmed. Instead, they had to wait until the txpool completely emptied.240

Exactly 100 transactions waited longer than three hours. They paid between 19465 and 19998 piconeros241

per byte. Most of the transactions appeared to have set fees slightly lower than 20 nanonerpos per byte242

because they had an unusual number of inputs. 92 of them had four or more inputs. The remaining eight243

of them had just one input. Those eight may have been constructed by a nonstandard wallet.244

8 Real user fee behavior245

During the suspected spam, users must pay more than the minimum fee to put their transactions at the246

front of the confirmation queue. If users pay more than the minimum fee, usually their transactions would247

be confirmed in the next mined block. Monero’s standard fee levels are 20, 80, 320, and 4000 nanoneros248

per byte. Users are not required to pay one of these fee levels, but all wallets that are based on wallet2249

do not allow users to choose custom fees outside of the four standard levels because of the privacy risk of250
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unusual transactions.6251

The “auto” fee level of the Monero GUI and CLI wallets is supposed to automatically change the fee252

of a transaction from the lowest tier (20 nanoneros/byte) to the second tier (80 nanoneros/byte) when the253

txpool is congested. Unfortunately, a bug prevented the automatic adjustment. On March 9, 2024 the254

Monero Core Team released the 0.18.3.2 version of Monero and the GUI/CLI wallet that fixed the bug.7255

Users are not required to upgrade to the latest wallet version, so probably many users still use the version256

that is not automatically adjusting fees.257

The first plot of Figure 12 shows the share of trasnactions paying each of the four fee tiers. Any258

transactions that do not pay in the standard ranges {[18, 22] , [72, 82] , [315, 325] , [3000, 4100]} were not259

included in the plot. The 320 nanoneros/byte tier is interesting. About 10 percent of transactions paid260

320 nanonero/byte until Februray 17, 2024. The date could have something to do with Monero being261

delisted from Binance on February 20, 2024.8 Then on March 12-13, 2024 there was a burst of 320262

nanonero/byte transactions. The 0.18.3.2 GUI/CLI wallet release could not explain the burst since the263

auto fee adjustment would only increase fees from 20 to 80 nanoneros/byte. The burst of 320 nanonero/byte264

transactions must have been either from a central service producing fees or from the suspected spammer.265

The second plot of Figure 12 shows the same data with the suspected spam transactions eliminated266

both the 80 and 320 nanoneros/byte transactions with the spam fingerprint were removed. There is a267

modest increase in 80 nanonero/byte transactions after the spam started.268

6https://github.com/Rucknium/misc-research/tree/main/Monero-Nonstandard-Fees
7“Monero 0.18.3.2 ’Fluorine Fermi’ released” https://www.getmonero.org/2024/03/09/monero-0.18.3.2-released.

html
“wallet2: adjust fee during backlog, fix set priority” https://github.com/monero-project/monero/pull/9220

8https://decrypt.co/218194/binance-finalizes-monero-delisting
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Figure 12: Share of transactions by fee tier

The mempool archive data suggest that merchants using zero-confirmation delivery were still safe269

during the spam incident. Once submitted to the network, transactions did not drop out of the mempool.270

They just took longer to confirm. There were only two transaction IDs in the mempool of one of the271

mempool archive nodes that did not confirm during the spam period. Both occurred on March 8 when the272

mempool was very congested. The the two “disappearing transactions” could happen if someone submits273

a transactions to an overloaded public RPC node, the transactions does not propagate well, and then the274

user reconstructs the transactions with another node. The first transaction will not confirm because it275

is a double spend. Seeing a transaction in the mempool that never confirms happens sometimes during276

normal transaction volumes, too. Single transactions like that appeared on February 14, 17, and 23 and277

March 1 in the mempool archive data.278

9 Evidence for and against the spam hypothesis279

Is the March 4, 2024 transaction volume a result of many real users starting to use Monero more, or is280

it spam created by a single entity? [Krawiec-Thayer et al., 2021] analyzed the July/August 2021 sudden281

rise in transaction volume. We concluded that it was likely spam. Our evidence was: 1) There was a282

sharp increase of 1in/2out and 2in/1out transactions, but the volume of other transaction types did not283

increase, 2) All the suspected spam paid minimum fees, 3) The distribution of ring members became much284
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younger, suggesting that the spammer was rapidly re-spending outputs as quickly as possible.285

Available time has not permitted a full run of the [Krawiec-Thayer et al., 2021] analysis on the March286

2024 suspected spam data. It is easy to do a quick check of transaction volume by input/output type.287

Figure 13 plots the eight most common in/out transaction types on a log scale. Only the volume of288

1in/2out transactions increased on March 4, supporting the spam hypothesis.289

Figure 13: Transaction volume by number of inputs and outputs (log scale)

More can be done to generate evidence for or against the spam hypothesis. [Krawiec-Thayer et al., 2021]290

analyzed the age of all ring members. Using the OSPEAD techniques, the distribution of the age of the291

real spends can be estimated.9 The Monero node network can be actively crawled to see if the spam292

transactions originate from one node. Dandelion++ can defeat attempts to discover the origin of most293

transaction because the signal of the real transaction is covered by the Dandelion++ noise. When the294

signal is huge like the spam, some statistical analysis could overcome the Dandelion++ protection. In-295

9https://github.com/Rucknium/OSPEAD
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vestigatory nodes could use set_log net.p2p.msg:INFO to view which neighboring nodes the suspected296

spam is coming from. Then the investigatory node could crawl the network in the direction of the high-297

est incoming volume. The techniques of [Sharma et al., 2022] are useful at extremely high transaction298

volumes, like in the spam case, and could be used.299
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