# install.packages("gt") library(gt) PPV <- function(n, beta, mu_C) { d <- 1:n (1/n)*(1-beta)^n*(1-mu_C) + sum( (1/d) * dbinom(d-1, n-1, beta) * (mu_C+beta*(1-mu_C)) ) } # Formula for PPV estimator PPV.matrix <- function(n, beta.set, mu_c.set) { results <- matrix(0, nrow = length(beta.set), ncol = length(mu_c.set), dimnames = list(beta.set*100, mu_c.set*100)) for (i in beta.set) { for (j in mu_c.set) { results[i == beta.set, j == mu_c.set] <- PPV(n, i, j) } } results } latex.table <- function(x, title) { latex.output <- as.data.frame(x) |> gt(rownames_to_stub = TRUE) |> tab_header(title = title ) |> tab_stubhead(label = "% blockchain outputs with defect") |> tab_spanner(label = "% rings of defective txs with change output as the real spend", columns = colnames(x) ) |> # tab_style(style = cell_text(align = "center"), locations = cells_stubhead()) |> # Not properly implemented for LaTeX as_latex() |> as.character() cat(gsub("begin{longtable}{l", "begin{longtable}{r", latex.output, fixed = TRUE)) invisible(NULL) } beta.set <- c(0.001, 0.01, 0.02, 0.05, 0.10, 0.25, 0.50) mu_c.set <- seq(0.3, 0.7, by = 0.05) PPV.16 <- PPV.matrix(16, beta.set, mu_c.set) latex.table(round(PPV.16*100, 2), "Positive Predictive Value when ring size is 16") PPV.128 <- PPV.matrix(128, beta.set, mu_c.set) latex.table(round(PPV.128*100, 2), "Positive Predictive Value when ring size is 128") beta.set.multiplier <- matrix(beta.set, nrow = length(beta.set), ncol = length(mu_c.set), dimnames = list(beta.set*100, mu_c.set*100)) latex.table(round((PPV.16 - 1/16)*beta.set.multiplier*100, 2), "(PPV - 1/ring_size)*(share of rings affected) when ring size is 16") latex.table(round((PPV.128 - 1/128)*beta.set.multiplier*100, 2), "(PPV - 1/ring_size)*(share of rings affected) when ring size is 128")