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Abstract6

Many parts of Monero’s transaction format such as tx_extra contents, the fee paid to miners, and7

the decoy selection algorithm are not standardized by rules set by nodes nor blockchain consensus.8

Instead, alternative Monero wallet implementations are free to set these transaction characteristics in9

ways that are unique to the wallet implementation. Therefore, observers of the blockchain data can10

determine that a transaction was likely created by a nonstandard implementation. The distinguishing11

characteristics of transactions create many “anonymity puddles” instead of one “anonymity pool”. An12

adversary that aims to guess the real spend of a ring signature can exploit the information contained13

in these characteristics, referred to as “fungibility defects”.14

This note defines a simple classification rule that leverages information about the fungibility defects15

of each ring signature’s 16 members. The classification rule is applied to the rings in all transactions16

that have the defect. A ring member having the defect increases the probability that it is the real17

spend because a user will often spend “change” outputs from transactions that were created by their18

own nonstandard wallet. Using basic probability concepts I develop a closed-form expression for the19

probability that the classifier correctly classifies a ring member as the real spend. This probability, the20

Positive Predictive Value (PPV) is a function of ring size, the probability that a user spends change in21

a ring, and the proportion of transaction outputs on the blockchain that have the defect. These three22

values are either defined by Monero’s protocol rules or can be accurately estimated directly from the23

blockchain data. For example, when these values are 16, 40%, and 5%, respectively, the probability24

that the classifier correctly classifies a ring member as the real spend is 31.7%, much higher than the25

1/16 = 6.25% probability of randomly guessing between the 16 ring members.26

1 Introduction27

Define a fungibility defect as a characteristic of a Monero transaction that marks it as being created by28

a “nonstandard” wallet implementation. A wallet implementation is “standard” if it creates transactions29

in the same way that wallet2 does.1 Some examples of defects are nonstandard fees, nonstandard data30

in tx_extra, and nonstandard decoy selection algorithms. These transactions produce outputs. We say31

that an output has the defect if the transaction that produced it has the defect. Transactions with the32

1https://github.com/monero-project/monero/blob/master/src/wallet/wallet2.cpp
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defect also contain one or more inputs, each of which is composed of a ring with 16 ring members that are33

outputs of previous transactions on the blockchain. One of the 16 ring members is the real spend. One or34

more of the ring members may be from a transaction that had the defect.35

It is not always possible to know with certainty whether a transaction has a fungibility defect. For36

example, it can be difficult to determine that a set of decoys was selected with a nonstandard method37

because the age distribution of the members of any given ring could be generated by many different, but38

similar, decoy selection algorithms. Therefore, certain types of defects would require an initial step to39

probabilistically classify transactions as having the defect or not. In the rest of document we will assume40

that an observer knows with certainty whether a transaction has the defect.41

Fungibility defects can help an observer guess the real spend in rings. When a user sends XMR to42

another user and does not fully consume the value of the input(s) used in the transaction, a “change”43

output is sent back to the user’s wallet. Later, the user can use the change output as an input in another44

transaction. If the user is using a wallet that produces transactions with fungibility defects, the initial45

transaction will have the defect. The transaction that spends the change output will have the defect, too.46

If the defect is “rare” on the blockchain, then ring members with the defect will appear in the ring as47

decoys with low probability. However, the change output with the defect, which is the real spend, would48

appear with high probability. A classification rule can exploit the differences in these two probabilities to49

achieve high accuracy of correctly guessing the real spend.50

2 Why do we care?51

It may be easy to say “Eliminate all fungibility defects. Why do we need to know the exact impact on52

privacy? Fungibility defects are always bad.” This sentiment ignore two facts:53

1. Trying to eliminate certain types of fungibility defects could have downsides or be infeasible.54

2. A privacy-improving change to the standard transaction construction procedure could be imple-55

mented at a point in time when users are not required to upgrade their wallet software, creating56

sets of “old format” standard transactions and “new format” standard transactions simultaneously57

on the blockchain. Users are usually only required to upgrade their wallet software when a hard fork58

(network upgrade) occurs.59

Requiring the contents of tx_extra to be encrypted has been suggested as a way to achieve uniformity of60

tx_extra contents.2 However, there is no certain way to automatically determine that tx_extra contents61

are actually encrypted. A statistical test could be performed, but some valid transactions would be rejected62

and some non-encrypted tx_extra contents would be let through the statistical test filter. A statistical63

test is an imperfect solution.64

2https://github.com/monero-project/monero/issues/6668
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Restricting allowed values for the transaction fee can also have downsides. There needs to be a signal65

to miners that users are willing to pay more to include into their transactions into a full block. Monero’s66

dynamic block size adjustment requires the signal. Restricting the set of allowed fee values could mute67

the signal. Users may be willing to pay current_fee + ϵ, but may not be willing to pay the next-highest68

fee in the set of allowed fees. The current Seraphis upgrade proposal would require “fee discretization” to69

reduce the set of allowed fees.370

Requiring a specific decoy selection algorithm (DSA) has been suggested, too.4 Depending on how a71

standard DSA is enforced, it could be difficult to change the DSA if a better one is found.72

Even when a specific characteristic of transactions is not required by protocol rules, wallet2’s behavior73

establishes a “standard”. What if a better standard is developed and deployed at a point in time that is74

not a hard fork? Does the privacy risk of two simultaneous “standard” formats outweigh the benefit to75

users? This has happened already. There were improvements to wallet2’s decoy selection algorithms76

in September 2021 and April 2023 without a hard fork.5 Two improvements to the DSA (OSPEAD and77

excluding coinbase outputs) are in development and theoretically could be implemented in wallet2 before78

the next hard fork.6 Computing specific numbers for privacy risks of having two different “standard”79

formats would allow conclusive cost-benefit analysis of changes to wallet2’s transaction construction80

procedure without a hard fork.81

3 Existing research82

Mitchell Krawiec-Thayer (isthmus) used exploratory data analysis to analyze the prevalence of fungibility83

defects at MoneroKon 2019.7 Krawiec-Thayer followed up with “Heuristic Framework for Generalized84

Transaction Tree Analysis”, which formalized fungibility defects and visualized how the defects could help85

analyze Monero’s transaction graph.8 Goodell (Surae) & Noether (Sarang) (2021?) is a draft Monero86

Research Lab research bulletin.9 They develop a maximum likelihood estimator for probabilistically87

estimating Monero’s real transaction graph. They set up a Monte Carlo simulation to estimate the88

probability of false positives and false negatives of their technique. However, the simulation apparently was89

never executed and the probability of false positives and false negatives were never computed. Rucknium’s90

Monerotopia 2023 presentation lists fungibility defects and raises questions about how they could be91

3https://gist.github.com/UkoeHB/f508a6ad973fbf85195403057e87449e
4https://github.com/monero-project/research-lab/issues/87
5https://www.getmonero.org/2021/09/20/post-mortem-of-decoy-selection-bugs.html

https://www.getmonero.org/2023/06/08/10block-old-decoy-selection-bug.html
6https://github.com/monero-project/research-lab/issues/93

https://github.com/monero-project/research-lab/issues/109
7Krawiec-Thayer, Mitchell (2019) “Visualizing Monero: A Figure is Worth a Thousand Logs.”

https://youtube.com/watch?v=XIrqyxU3k5Q
8Krawiec-Thayer, Mitchell (2022) “Heuristic Framework for Generalized Transaction Tree Analysis.”

https://github.com/Mitchellpkt/heuristics_framework_doc
9Goodell, Brandon & Noether, Sarang (2021?) “Disclosure Attacks and Privacy on Blockchains.”
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eliminated.10
92

This discussion note is different from the work by Krawiec-Thayer, Goodell, and Noether in two ways.93

Their work attempted to analyze how fungibility defects affecting the guessing probability for segments of94

the transaction graph. I do “single hop” analysis of one ring at a time. Goodell & Noether worked towards95

false positive/negative computation using a Monte Carlo simulation. I develop a closed form expression96

for false positive probability, which generally is considered more useful and more rigorous than a Monte97

Carlo simulation.98

Change outputs have been analyzed for years in bitcoin chain analysis research. Moser & Narayanan99

(2022) is a recent example.11
100

4 Scope and assumptions101

The analysis of this discussion note has these limits and assumptions:102

1. Only rings of transactions that have the defect are analyzed. There are potential “black marble”103

externalities that the defects inflict on standard transactions, but they will not be analyzed in this104

note (yet).12
105

2. It is assumed that the wallets that produce the transactions with defects have decoy selection algo-106

rithms (DSAs) that select decoys independently from each other and independently from the real107

spend. wallet2 selects decoys this way. Probably most nonstandard wallets select decoys this way,108

even if the probability distribution of their DSA is not the same as wallet2’s. However, transac-109

tions that use “cached” ring members that are not selected independently have been observed on the110

blockchain.111

3. Decoy selection algorithms generally do not select from all outputs with equal probability. Instead,112

more recent outputs are more likely to be selected. This discussion note simplifies this factor by113

assuming a constant share of outputs have the defect.114

4. Transactions with a specific defect may have a different share of the number of rings and outputs on115

the blockchain. For example, if transactions that have the defect usually have fewer rings, i.e. fewer116

inputs, than other transactions on the blockchain, then their share of rings on the blockchain may117

be lower than their share of outputs. This fact does not really affect the analysis except in Section118

8 when comparing anonymity puddles to anonymity droplets.119

10Rucknium (2023) “A Statistical Research Agenda for Monero”
https://github.com/Rucknium/presentations/blob/main/Rucknium-Monerotopia-2023-Slides.pdf
11Moser, Malte & Narayanan, Arvind (2022) “Resurrecting Address Clustering in Bitcoin”
https://arxiv.org/abs/2107.05749
12Noether, Surae, Noether, Sarang, & Mackenzie, Adam (2014). “A Note on Chain Reactions in Traceability in Cryptonote

2.0.”
Rucknium (2023) “Empirical Privacy Impact of Mordinals (Monero NFTs)”
https://www.reddit.com/r/Monero/comments/12kv5m0/empirical_privacy_impact_of_mordinals_monero_nfts/
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5. All analysis occurs at the ring level. In theory, information about multiple rings in a single transaction120

could be used to get higher classification accuracy, but that is not attempted in this note.121

6. The analysis pretends that coinbase outputs do not exist.122

7. It is assumed that the probability that a spent non-change output has the defect is equal to the123

share of outputs with the defect on the blockchain. This assumption seems reasonable, but is not124

critical for the overall analysis. Another assumption could be made. Then the formula would be125

slightly different.126

5 A classifier127

Let n be the ring size.128

Let D be the number of outputs with defects that may appear in a ring. It is a random integer variable129

with support (i.e. can take the values) 0, 1, 2, ..., n.130

Consider a classification rule that is applied only to rings in transactions that have the defect. We131

must define its rules by the number of defects D in each ring that the rule is applied to.132

The first case is when D is zero, i.e. when no ring members are from transactions with the defect.133

In this case the best the classifier can do is to randomly guess with equal probability among the n ring134

members. Therefore, its probability of successfully guessing the real spend is 1
n .135

The next case is when D is one. In this case the classifier guesses that the real spend is the single136

ring member with the defect. This guess will not always be correct. A ring that contains one output with137

the defect may be a user spending a change output from their wallet. Or the user may be spending a138

non-change address but the decoy selection algorithm randomly selected an output with the defect from139

the blockchain as a decoy. The next section will provide a formula for determining the probability of140

successfully guessing the real spend.141

Let D = 2. There are two ring members with the defect. With no additional information to choose142

between the two ring members, the classifier chooses one of them at random to classify it as the real spend.143

When D = 3, 4, ..., n follow the same classification procedure as with D = 2, except select randomly144

between the 3, 4, ..., n ring members, respectively, that have the defect.145

6 Classifier accuracy146

The proposed classifier will not correctly classify the real spend of 100 percent of rings in the transactions147

with the defect. It will make mistakes. How often will it make mistakes?148

Below is a standard table explaining different classification outcomes.149
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Classified as the real spend

Yes No

Actually is Yes True Positive (TP) False Negative (FN)

the real spend No False Positive (FP) True Negative (TN)

150

We will be concerned with the left column: true positives and false positives. The classifier always151

classifies exactly one ring member as the true spend. The Positive Predictive Value (PPV), also known152

as the precision, of a ring member classifier is the percentage of ring members classified as a real spend153

that are actually the real spend. It is the number of true positives divided by the sum of true positives154

and false positives: PPV = TP/(TP +FP ). The PPV is roughly equivalent to the “guessing probability”155

definition in Ronge et al. (2021).13
156

Our classifier encounters a ring that has a single ring member (D = 1) with the defect. The classifier157

classifies that ring member as the real spend. What is the probability that the classification is a true158

positive? A false positive?159

In this case, the classifier would correctly classify a ring member as the real spend, i.e. produce a160

true positive, when the user actually spent a change output (which has the defect by assumption) and161

the decoy selection algorithm did not include any outputs with the defect as decoys. The classifier would162

also produce a true positive in the rare case that the user spends a non-change output, but that non-163

change output by coincidence was sent from a wallet that produces the defect. (If the classifier aimed to164

correctly classify spending of change outputs, it would by chance get it wrong in this case, but we defined165

the objective of the classifier as correctly classifying the real spend regardless of whether it is a change166

output.) The classifier would produce a false positive if the user did not spend a change output and the167

decoy selection algorithm selected an output with the defect as a decoy.168

Let C be the random event that a user spends a change output in a ring that is in a transaction with169

the defect. Pr(C) is the probability that the event occurs. 1 − Pr(C) = Pr(¬C) is the probability that170

the user spends an output in a ring that is not a change output.171

Pr(D = d) is the probability that a ring has d members with the defect. The d is the realized value of172

the random D variable.173

Decompose D into the number of decoys Ddecoy in a ring that has the defect and the number of real174

spends Dreal (zero or one) that have the defect. The decomposition is D = Ddecoy +Dreal.175

Let β be the proportion of outputs on the blockchain that have the defect. Assume that a non-176

change output that a user spends has β probability of having the defect. As a probability expression:177

Pr(Dreal = 1|¬C) = β. Pr(A|B) is the probability of event A conditional on B.178

Let Pr(A∩B) denote the probability of events A and B both occurring. As explained in words above,179

a ring will have exactly one ring member with the defect in three different cases:180

13Ronge, V., Egger, C., Lai, R. W. F., Schroder, D., & Yin, H. H. F. (2021). “Foundations of Ring Sampling.” Proceedings
on Privacy Enhancing Technologies, 2021(3), 265–288.
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Case 1: The user actually spent a change output and the decoy selection algorithm did not include any181

outputs with the defect. The probability of this occurring is Pr(D = 1∩C). The algebraic manipulations182

below show that Pr(D = 1 ∩ C) is equivalent to183

Pr(Ddecoy = 0) · Pr(C) (1)

184

Pr(D = 1 ∩ C)

= Pr(Ddecoy = 0 ∩Dreal = 1 ∩ C) + Pr(Ddecoy = 1 ∩Dreal = 0 ∩ C)
Use Law of Total Probability and

D = Ddecoy +Dreal

= Pr(Ddecoy = 0 ∩Dreal = 1 ∩ C) + 0
All change outputs have the defect by

assumption, so Pr(Dreal = 0 ∩ C) = 0

= Pr(Ddecoy = 0) · Pr(Dreal = 1 ∩ C)
Selection of decoys is independent of

the probability of spending change

= Pr(Ddecoy = 0) · Pr(C)
All change outputs have the defect by

assumption, so Pr(Dreal = 1 ∩ C) = Pr(C)

185

Case 2: The decoy selection algorithm chose no outputs with the defect and the user spent a non-186

change output, but that non-change output coincidentally had the defect. The probability is Pr(Ddecoy =187

0∩D = 1∩¬C). The algebraic manipulations below show that Pr(Ddecoy = 0∩D = 1∩¬C) is equivalent188

to189

Pr(Ddecoy = 0) · Pr(¬C) · β (2)

Pr(Ddecoy = 0 ∩D = 1 ∩ ¬C)

= Pr(Ddecoy = 0 ∩Dreal = 1 ∩ ¬C) Use D = Ddecoy +Dreal

= Pr(Ddecoy = 0) · Pr(Dreal = 1 ∩ ¬C)
Selection of decoys is independent of the joint probability

of the real spend having the defect and not spending change.

= Pr(Ddecoy = 0) · Pr(¬C) · β
Pr(Dreal = 1|¬C) = β by assumption. By the definition of

conditional probability, Pr(Dreal = 1 ∩ ¬C) = Pr(¬C) · β

190

Case 3: The user did not spend a change output and the decoy selection algorithm included exactly191
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one outputs with the defect. The probability of this occurring is Pr(D = 1 ∩ Ddecoy = 1 ∩ ¬C). The192

algebraic manipulations below show that Pr(D = 1 ∩Ddecoy = 1 ∩ ¬C) is equivalent to193

Pr(Ddecoy = 1) · Pr(¬C) · (1− β) (3)

194

Pr(D = 1 ∩Ddecoy = 1 ∩ ¬C)

= Pr(Dreal = 0 ∩Ddecoy = 1 ∩ ¬C) Use D = Ddecoy +Dreal

= Pr(Ddecoy = 1) · Pr(Dreal = 0 ∩ ¬C)
Selection of decoys is independent of the joint probability

of the real spend not having the defect and not spending change.

= Pr(Ddecoy = 1) · Pr(¬C) · (1− β)
Pr(Dreal = 0|¬C) = 1− β by assumption. By the definition of

conditional probability, Pr(Dreal = 0 ∩ ¬C) = Pr(¬C) · (1− β)

195

We can determine the probability of a true positive and a false positive. The classifier will produce a196

true positive in Cases 1 and 2. Using the fact that Pr(¬C) = 1−Pr(C) and collecting terms of expressions197

(1) and (2), the sum of the probabilities of Cases 1 and 2 is Pr(Ddecoy = 0) · (Pr(C) + β · (1− Pr(C))).198

The classifier will produce a false positive in Case 3, which occurs with probability Pr(Ddecoy =199

1) · Pr(¬C) · (1− β).200

We can fill in the table for D = 1201

Classified as the real spend

Yes

Actually is Yes Pr(Ddecoy = 0) · (Pr(C) + β · (1− Pr(C)))

the real spend No Pr(Ddecoy = 1) · (1− Pr(C)) · (1− β)

202

The Positive Predictive Value of the classifier when D = 1 is203

PPVD=1 =
Pr(Ddecoy = 0) · (Pr(C) + β · (1− Pr(C)))

Pr(Ddecoy = 0) · (Pr(C) + β · (1− Pr(C))) + Pr(Ddecoy = 1) · (1− Pr(C)) · (1− β)
(4)

204

205

Consider the PPV for all cases: D = 0, 1, 2..., n. When D = 0, the classifier randomly guesses. Its206

true positive probability in the case is 1
n . The D = 0 event only occurs when the decoy selection algorithm207

selects zero decoys with the defect, the real spend is not a change output, and the real spend does not have208

the defect, i.e. Ddecoy = 0∩¬C∩Dreal = 0. Therefore, Pr(D = 0) = Pr(Ddecoy = 0∩¬C∩Dreal = 0). The209

algebraic manipulations below show that Pr(Ddecoy = 0∩¬C∩Dreal = 0) = Pr(Ddecoy = 0)·Pr(¬C)·(1−β).210

Therefore, the contribution of this case to the overall true positive probability is 1
n ·Pr(Ddecoy = 0)·Pr(¬C)·211

(1− β).212
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213

Pr(Ddecoy = 0 ∩ ¬C ∩Dreal = 0)

= Pr(Ddecoy = 0) · Pr(¬C ∩Dreal = 0)
Selection of decoys is independent of the joint probability

of the real spend not having the defect and not spending change.

= Pr(Ddecoy = 0) · Pr(¬C) · (1− β)
Pr(Dreal = 0|¬C) = 1− β by assumption. By the definition of

conditional probability, Pr(¬C ∩Dreal = 0) = Pr(¬C) · (1− β)

214

When D > 1, the calculation is similar to the case of D = 1 except the classifier is randomly selecting215

between multiple candidates with equal probability. Therefore, the probability of correct classification216

when D > 1 ∩ C occurs is not 100 percent. It is 1
D .217

Let d be the realized value of the random D variable. Following the example above when D = 1, in218

the D = d case the probability of a true positive is 1
d ·Pr(Ddecoy = d− 1) · (Pr(C) + β · (1− Pr(C))). The219

denominator of the PPVclassifier for every possible number of D is
∑n

d=0 Pr(D = d) = 1 by the Law of220

Total Probability. We only need to consider the numerator to calculate PPVclassifer, which is221

PPVclassifier =
1

n
·Pr(Ddecoy = 0)·(1−β)·(1−Pr(C))+

n∑
d=1

1

d
·Pr(Ddecoy = d−1)·(Pr(C) + β · (1− Pr(C)))

(5)

To compute PPVclassifier we need to know the values of n, β, Pr(C), and Pr(Ddecoy = d). The value222

of n is the ring size, a value defined by the Monero protocol. The β is the proportion of outputs on the223

blockchain that have the defect. It can be computed easily from the blockchain data. Estimation of Pr(C)224

and Pr(Ddecoy = d) is not as simple. The next section explains how to do it.225

7 Estimators for Pr(C) and Pr(Ddecoy = d)226

As before, let β be the proportion of outputs on the blockchain that have the defect. Ignore the time227

dimension of decoy selection. When a decoy selection algorithm selects a single ring member, there is a228

β probability that the ring member has the defect. When the decoy selection algorithm selects a total229

of n decoys, the probability that the set of decoys contains some d number of outputs with the defect is230

determined by a binomial distribution. Let f be the probability mass function of this probability:231

f(d, n, β) =

(
n

d

)
βd (1− β)n−d , where

(
n

d

)
=

n!

d!(n− d)!
(6)

232

233

The probability that d decoys have the defect is Pr(Ddecoy = d) = f(d, n− 1, β) since n− 1 decoys are234

selected. Replace Pr(Ddecoy = d) in (5) with f(d, n− 1, β) and use the fact f(0, n− 1, β) = (1− β)n−1 to235
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obtain236

PPVclassifier =
1

n
· (1− β)n · (1− Pr(C))+

n∑
d=1

1

d
· f(d− 1, n− 1, β) · (Pr(C) + β · (1− Pr(C))) (7)

237

238

We need to estimate Pr(C), the probability that the real spend of a ring in a transaction with the239

defect is itself an output with the defect. Consider the event D = 0. The previous section showedPr(D =240

0) = Pr(Ddecoy = 0) · Pr(¬C) · (1− β). We know Pr(Ddecoy = 0) = (1− β)n−1 and Pr(¬C) = 1− Pr(C).241

Therefore, Pr(D = 0) = (1−β)n−1 · (1− Pr(C)) · (1−β) = (1−β)n · (1− Pr(C)). Solving for Pr(C) gives242

Pr(C) = 1− Pr(D = 0)

(1− β)n
(8)

243

244

We now have everything we need to estimate PPVclassifier from the data on the blockchain.245

Let #{D = 0∩RtxD} be the number of rings on the blockchain that have zero ring members with the246

defect, yet the ring is within a transaction that has the defect.247

Let #{RtxD} be the number of rings that are within a transaction that has the defect.248

Define a plug-in estimator for Pr(D = 0):249

µ̂D=0 =
#{D = 0 ∩RtxD}

#{RtxD}
(9)

250

251

We need an estimator for β, the proportion of outputs on the blockchain that are within a transaction252

that has the defect.253

Let #{OtxD} be the number of outputs on the blockchain that are within a transaction that has the254

defect.255

Let #{O} be the total number of outputs on the blockchain.256

Define a plug-in estimator for β:257

β̂ =
#{OtxD}
#{O}

(10)

258

259

We can define an estimator for Pr(C) using µ̂D=0 and β̂:260

µ̂C = 1− µ̂D=0

(1− β̂)n
(11)
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261

262

(Note that there is another suitable estimator for (1 − β̂)n. It is also the probability that rings in263

transactions without the defect have zero ring members with the defect. Therefore, a different estimator264

for (1− β̂)n could be #{D = 0 ∩Rtx¬D}/#{Rtx¬D}.)265

We have all items in place to create an estimator of PPVclassifier266

P̂PV classifier =
1

n
· (1− β̂)n · (1− µ̂C)+

n∑
d=1

1

d
· f(d− 1, n− 1, β̂) ·

(
µ̂C + β̂ · (1− µ̂C)

)
(12)

8 Privacy impact267

P̂PV classifier is a function of the ring size n, the estimated proportion of outputs on the blockchain that268

have the defect β̂, and the estimated proportion of rings in transactions that have the defect whose real269

spend is a change output µ̂C . Ring size n is set by the Monero protocol. How does varying β̂ and µ̂C270

affect the value of P̂PV classifier? And what are reasonable values for β̂ and µ̂C?271

In my preliminary research on nonstandard fees on the blockchain, I have found at least 10 percent272

of transactions have a nonstandard fee. Each type of nonstandard fee is its own defect with its own273

“anonymity puddle”. The nonstandard fee puddles are about 0.1%-5% in size, as a share of transactions274

on the blockchain. Therefore, the set of β̂ to explore should at least cover 0.1%-5%. The set should extend275

even higher to analyze what could happen if there is a change in wallet2’s transaction construction276

behavior between hard forks. The share of transactions using the “new” wallet2 method would rise from277

nothing to a majority when more users update their wallet software.278

The value of µ̂C is determined by a combination of user behavior and wallet input selection rules. If a279

user receives a large amount of XMR from an external source in one payment and re-spends many times280

from that one payment into their wallet, then the share of their transactions that only use change outputs281

will be high, meaning the value of µ̂C would be high. When multiple outputs are available to be spent in282

a wallet, wallet software can be programmed to choose to spend change outputs with higher probability,283

which would also generate a higher value of µ̂C . In my empirical investigation of nonstandard fees on the284

blockchain, I have seen estimated values of µ̂C between 40% and 50%. Exploring a range of 30%-70% is285

reasonable.286

Table 1 shows the PPV for ranges of β̂ and µ̂C when ring size is 16. Completely random guessing287

between 16 ring members with equal probability would produce a PPV of 1/16 = 6.25%. Both β̂ and µ̂C288

have a large influence on PPV.289

The numbers in the table support the theory that having smaller defect puddles (“droplets”) is worse290

for privacy than having one larger defect puddle. Looking at the µ̂C = 50% column, having a single defect291

puddle with 10% of blockchain outputs produces a PPV of 28.6% for those approximately 10% of rings292
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on the blockchain that have the common defect. But having 10 distinct defects each with 1% share of293

blockchain outputs produces a 49.5% PPV for those approximately 10% of rings on the blockchain that294

have one of those 10 distinct defects.295

Table 1: Positive Predictive Value when ring size is 16

% rings of defective txs with change output as the real spend

% blockchain outputs with defect 30 35 40 45 50 55 60 65 70

0.1 34.15 38.80 43.45 48.10 52.75 57.40 62.05 66.70 71.35

1 32.23 36.56 40.89 45.22 49.54 53.87 58.20 62.53 66.86

2 30.27 34.27 38.28 42.28 46.28 50.28 54.29 58.29 62.29

5 25.37 28.56 31.74 34.93 38.12 41.30 44.49 47.68 50.86

10 19.65 21.88 24.12 26.35 28.58 30.82 33.05 35.28 37.52

25 11.80 12.72 13.65 14.57 15.50 16.42 17.35 18.27 19.20

50 8.12 8.44 8.75 9.06 9.37 9.69 10.00 10.31 10.62

Table 2 is the same as Table 1 except ring size is 128. When β̂ is very small and ring size is 128, the296

PPV is similar to the PPV with ring size 16. However, when β̂ increases, PPV of ring size 128 decreases297

rapidly compared to the PPV of ring size 16.298

Table 2: Positive Predictive Value when ring size is 128

% rings of defective txs with change output as the real spend

% blockchain outputs with defect 30 35 40 45 50 55 60 65 70

0.1 28.72 33.38 38.03 42.69 47.34 52.00 56.66 61.31 65.97

1 17.51 20.30 23.09 25.87 28.66 31.45 34.24 37.03 39.81

2 11.38 13.15 14.92 16.68 18.45 20.22 21.98 23.75 25.52

5 5.23 5.97 6.71 7.45 8.19 8.93 9.67 10.42 11.16

10 2.89 3.24 3.59 3.95 4.30 4.65 5.00 5.35 5.70

25 1.48 1.60 1.72 1.84 1.95 2.07 2.19 2.30 2.42

50 1.02 1.05 1.09 1.13 1.17 1.21 1.25 1.29 1.33

9 Simulation results299

I wrote code to simulate how a wallet with a defect would create rings. Then I applied the classification300

rules to those rings and computed the PPV of the classification rule. The purpose of the Monte Carlo301

simulation is to provide some corroborating evidence that the estimator I developed for the PPV is302
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“correct”, i.e. is consistent. (I will not formally prove consistency in this draft.) The parameters of the303

simulation were:304

Number of rings = 10 million305

n = 16306

β = 0.05307

Pr(C) = 0.4308

The actual PPV in this simulation was 31.7407 when explicitly following the classification rule. The309

estimated PPV in the simulation, P̂PV classifier, was 31.6962. Therefore, the actual PPV was about 0.1%310

different from the estimated PPV. The estimated Pr(C) was 39.92552%, very close to the true value of311

40%.312

The code to reproduce this simulation is available at313

https://github.com/Rucknium/misc-research/tree/main/Monero-Fungibility-Defect-Classifier/314

code315
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