diff --git a/Financial-Marginalization-and-Cryptocurrency/Financial-Marginalization-and-Cryptocurrency-Payments.Rmd b/Financial-Marginalization-and-Cryptocurrency/Financial-Marginalization-and-Cryptocurrency-Payments.Rmd
index 04cb8d0..c7a43a0 100644
--- a/Financial-Marginalization-and-Cryptocurrency/Financial-Marginalization-and-Cryptocurrency-Payments.Rmd
+++ b/Financial-Marginalization-and-Cryptocurrency/Financial-Marginalization-and-Cryptocurrency-Payments.Rmd
@@ -116,11 +116,11 @@ SHED$crypto.used.as.payment <- SHED$S16_b == "Yes"
# Do you and/or your spouse or partner
# currently have a checking, savings or money
# market account?
-SHED$does.not.have.bank.account <- SHED$BK1 == "No"
+SHED$lacks.bank.account <- SHED$BK1 == "No"
# C2A
# Do you currently have at least one credit card?
-SHED$does.not.have.credit.card <- SHED$C2A == "No"
+SHED$lacks.credit.card <- SHED$C2A == "No"
# ppgender
# Gender [Ipsos source]
@@ -308,7 +308,7 @@ SHED <- svydesign(ids = ~0, data = SHED, weights = SHED$weight_pop)
svyvar.covariance <- svyvar(~ age + is.male + crypto.used.as.payment +
- does.not.have.bank.account + does.not.have.credit.card, SHED, na.rm = TRUE)
+ lacks.bank.account + lacks.credit.card, SHED, na.rm = TRUE)
attr(svyvar.covariance, "var") <- NULL
svyvar.correlation <- cov2cor(as.matrix(svyvar.covariance))
@@ -316,29 +316,29 @@ print(round(svyvar.correlation, 3))
corrplot(svyvar.correlation, tl.col = "darkred", tl.srt = 35,
method = "shade", number.digits = 2, addshade = "all", diag = FALSE,
- title = "\n\n Correlation Plot",
+ title = "\n\n Correlation Matrix of Financial Marginalization\nand Use of Cryptocurrency as a Means of Payment",
addCoef.col = "black", type = "lower")
```
# Main results
-## does.not.have.bank.account
+## lacks.bank.account
-```{r main-results-does-not-have-bank-account}
+```{r main-results-lacks-bank-account}
-svyglm.fit <- svyglm(crypto.used.as.payment ~ age + is.male + does.not.have.bank.account,
+svyglm.fit <- svyglm(crypto.used.as.payment ~ age + is.male + lacks.bank.account,
SHED, family = stats::quasibinomial(link = "logit"))
summary(svyglm.fit)
-or_svyglm(SHED$variables$variables, svyglm.fit, incr = list(age = 1))
+or_svyglm(SHED$variables, svyglm.fit, incr = list(age = 1))
```
-## does.not.have.credit.card
+## lacks.credit.card
-```{r main-results-does-not-have-credit-card}
+```{r main-results-lacks-credit-card}
-svyglm.fit <- svyglm(crypto.used.as.payment ~ age + is.male + does.not.have.credit.card,
+svyglm.fit <- svyglm(crypto.used.as.payment ~ age + is.male + lacks.credit.card,
SHED, family = stats::quasibinomial(link = "logit"))
summary(svyglm.fit)
or_svyglm(SHED$variables, svyglm.fit, incr = list(age = 1))
diff --git a/Financial-Marginalization-and-Cryptocurrency/Financial-Marginalization-and-Cryptocurrency-Payments.html b/Financial-Marginalization-and-Cryptocurrency/Financial-Marginalization-and-Cryptocurrency-Payments.html
index 8105d66..888df15 100644
--- a/Financial-Marginalization-and-Cryptocurrency/Financial-Marginalization-and-Cryptocurrency-Payments.html
+++ b/Financial-Marginalization-and-Cryptocurrency/Financial-Marginalization-and-Cryptocurrency-Payments.html
@@ -423,11 +423,11 @@ SHED$crypto.used.as.payment <- SHED$S16_b == "Yes"
# Do you and/or your spouse or partner
# currently have a checking, savings or money
# market account?
-SHED$does.not.have.bank.account <- SHED$BK1 == "No"
+SHED$lacks.bank.account <- SHED$BK1 == "No"
# C2A
# Do you currently have at least one credit card?
-SHED$does.not.have.credit.card <- SHED$C2A == "No"
+SHED$lacks.credit.card <- SHED$C2A == "No"
# ppgender
# Gender [Ipsos source]
@@ -608,77 +608,77 @@ SHED <- svydesign(ids = ~0, data = SHED, weights = SHED$weight_pop)
Checking correlations between main variables
svyvar.covariance <- svyvar(~ age + is.male + crypto.used.as.payment +
- does.not.have.bank.account + does.not.have.credit.card, SHED, na.rm = TRUE)
+ lacks.bank.account + lacks.credit.card, SHED, na.rm = TRUE)
attr(svyvar.covariance, "var") <- NULL
svyvar.correlation <- cov2cor(as.matrix(svyvar.covariance))
print(round(svyvar.correlation, 3))
-
## age is.male crypto.used.as.payment does.not.have.bank.account does.not.have.credit.card
-## age 1.000 -0.024 -0.070 -0.106 -0.201
-## is.male -0.024 1.000 0.033 0.011 0.030
-## crypto.used.as.payment -0.070 0.033 1.000 0.035 0.035
-## does.not.have.bank.account -0.106 0.011 0.035 1.000 0.364
-## does.not.have.credit.card -0.201 0.030 0.035 0.364 1.000
+## age is.male crypto.used.as.payment lacks.bank.account lacks.credit.card
+## age 1.000 -0.024 -0.070 -0.106 -0.201
+## is.male -0.024 1.000 0.033 0.011 0.030
+## crypto.used.as.payment -0.070 0.033 1.000 0.035 0.035
+## lacks.bank.account -0.106 0.011 0.035 1.000 0.364
+## lacks.credit.card -0.201 0.030 0.035 0.364 1.000
## attr(,"statistic")
## [1] "variance"
corrplot(svyvar.correlation, tl.col = "darkred", tl.srt = 35,
method = "shade", number.digits = 2, addshade = "all", diag = FALSE,
- title = "\n\n Correlation Plot",
+ title = "\n\n Correlation Matrix of Financial Marginalization\nand Use of Cryptocurrency as a Means of Payment",
addCoef.col = "black", type = "lower")
-
+
Main results
-
-
does.not.have.bank.account
-
svyglm.fit <- svyglm(crypto.used.as.payment ~ age + is.male + does.not.have.bank.account,
+
+
lacks.bank.account
+
svyglm.fit <- svyglm(crypto.used.as.payment ~ age + is.male + lacks.bank.account,
SHED, family = stats::quasibinomial(link = "logit"))
summary(svyglm.fit)
##
## Call:
-## svyglm(formula = crypto.used.as.payment ~ age + is.male + does.not.have.bank.account,
+## svyglm(formula = crypto.used.as.payment ~ age + is.male + lacks.bank.account,
## design = SHED, family = stats::quasibinomial(link = "logit"))
##
## Survey design:
## svydesign(ids = ~0, data = SHED, weights = SHED$weight_pop)
##
## Coefficients:
-## Estimate Std. Error t value Pr(>|t|)
-## (Intercept) -2.913447 0.226073 -12.887 < 2e-16 ***
-## age -0.031695 0.004137 -7.662 1.97e-14 ***
-## is.maleTRUE 0.466379 0.168780 2.763 0.00573 **
-## does.not.have.bank.accountTRUE 0.581630 0.285850 2.035 0.04190 *
+## Estimate Std. Error t value Pr(>|t|)
+## (Intercept) -2.913447 0.226073 -12.887 < 2e-16 ***
+## age -0.031695 0.004137 -7.662 1.97e-14 ***
+## is.maleTRUE 0.466379 0.168780 2.763 0.00573 **
+## lacks.bank.accountTRUE 0.581630 0.285850 2.035 0.04190 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 0.958345)
##
## Number of Fisher Scoring iterations: 7
-
or_svyglm(SHED$variables$variables, svyglm.fit, incr = list(age = 1))
-
## predictor oddsratio ci_low (2.5) ci_high (97.5) increment
-## 1 age 0.969 0.961 0.977 Indicator variable
-## 2 is.maleTRUE 1.594 1.145 2.219 Indicator variable
-## 3 does.not.have.bank.accountTRUE 1.789 1.022 3.133 Indicator variable
+
or_svyglm(SHED$variables, svyglm.fit, incr = list(age = 1))
+
## predictor oddsratio ci_low (2.5) ci_high (97.5) increment
+## 1 age 0.969 0.961 0.977 1
+## 2 is.maleTRUE 1.594 1.145 2.219 Indicator variable
+## 3 lacks.bank.accountTRUE 1.789 1.022 3.133 Indicator variable
-
-
does.not.have.credit.card
-
svyglm.fit <- svyglm(crypto.used.as.payment ~ age + is.male + does.not.have.credit.card,
+
+
lacks.credit.card
+
svyglm.fit <- svyglm(crypto.used.as.payment ~ age + is.male + lacks.credit.card,
SHED, family = stats::quasibinomial(link = "logit"))
summary(svyglm.fit)
##
## Call:
-## svyglm(formula = crypto.used.as.payment ~ age + is.male + does.not.have.credit.card,
+## svyglm(formula = crypto.used.as.payment ~ age + is.male + lacks.credit.card,
## design = SHED, family = stats::quasibinomial(link = "logit"))
##
## Survey design:
## svydesign(ids = ~0, data = SHED, weights = SHED$weight_pop)
##
## Coefficients:
-## Estimate Std. Error t value Pr(>|t|)
-## (Intercept) -2.952972 0.234628 -12.586 < 2e-16 ***
-## age -0.031084 0.004205 -7.392 1.54e-13 ***
-## is.maleTRUE 0.466022 0.168684 2.763 0.00574 **
-## does.not.have.credit.cardTRUE 0.304096 0.214471 1.418 0.15625
+## Estimate Std. Error t value Pr(>|t|)
+## (Intercept) -2.952972 0.234628 -12.586 < 2e-16 ***
+## age -0.031084 0.004205 -7.392 1.54e-13 ***
+## is.maleTRUE 0.466022 0.168684 2.763 0.00574 **
+## lacks.credit.cardTRUE 0.304096 0.214471 1.418 0.15625
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
@@ -686,10 +686,10 @@ summary(svyglm.fit)
##
## Number of Fisher Scoring iterations: 7
or_svyglm(SHED$variables, svyglm.fit, incr = list(age = 1))
-
## predictor oddsratio ci_low (2.5) ci_high (97.5) increment
-## 1 age 0.969 0.961 0.977 1
-## 2 is.maleTRUE 1.594 1.145 2.218 Indicator variable
-## 3 does.not.have.credit.cardTRUE 1.355 0.890 2.064 Indicator variable
+
## predictor oddsratio ci_low (2.5) ci_high (97.5) increment
+## 1 age 0.969 0.961 0.977 1
+## 2 is.maleTRUE 1.594 1.145 2.218 Indicator variable
+## 3 lacks.credit.cardTRUE 1.355 0.890 2.064 Indicator variable