misc-research/Monero-Black-Marble-Flood/code/effective-ring-size-projections.R

169 lines
8.1 KiB
R
Raw Normal View History

mean.coinbase.tx.size <- output.index[!duplicated(tx_hash) & tx_num == 1, mean(tx_size_bytes)]
num.blocks.during.spam <- output.index[block_height %between% c(start.spam.height, end.spam.height), uniqueN(block_height)]
mean.size.1in.2out <- spam.results[[1]]$non.spam.fingerprint.tx[number_of_inputs == 1 & number_of_outputs == 2, mean(tx_size_bytes)]
mean.size.2in.2out <- spam.results[[1]]$non.spam.fingerprint.tx[number_of_inputs == 2 & number_of_outputs == 2, mean(tx_size_bytes)]
mean.size.16.ring.input <- mean.size.2in.2out - mean.size.1in.2out
mean.size.zero.ring.tx.size <- mean.size.1in.2out - mean.size.16.ring.input
# This "size zero ring" is so that the variable ring size can be added later
mean.size.16.ring.input <- mean.size.16.ring.input - 32 * 4
# We subtract 32 bytes times 4 because
# 1) The key image in the vin[[1]]$key$k_image JSON object is 32 bytes (64 characters
# of hexcode, divided by two). There is one key image per ring.
# 2-4) There are 3 other 32 byte strings in
# rctsig_prunable$CLSAGs[[1]]$c1
# rctsig_prunable$CLSAGs[[1]]$D
# rctsig_prunable$pseudoOuts
# That appear once per ring and do not seem to scale up with ring size.
# The "mean.size.16.ring.input" will be one 32 byte string for the ring signature
# string per each ring member, plus some amount (about 3) bytes for
# the average storage space per integer output index in vin[[1]]$key$key_offsets
# I think the integer output indices are store as variable-length (in bytes)
# data objects.
mean.size.one.ring.member <- mean.size.16.ring.input / 16
sim.spam <- lapply(c(11, 16, 25, 40, 60), FUN = function(ring.size.sim) {
non.spam.fingerprint.tx.sim <- copy(spam.results[[1]]$non.spam.fingerprint.tx)
non.spam.fingerprint.tx.sim[, tx_weight_bytes.sim :=
tx_weight_bytes - mean.size.16.ring.input * number_of_inputs + number_of_inputs * mean.size.one.ring.member * ring.size.sim]
mean.non.spam.kb.per.block <- mean.coinbase.tx.size/1000 +
(sum(non.spam.fingerprint.tx.sim[block_height %between%
c(start.spam.height, end.spam.height), tx_weight_bytes.sim])/num.blocks.since.spam)/1000
mean.non.spam.output.per.block <- nrow(non.spam.fingerprint[block_height %between%
c(start.spam.height, end.spam.height), ])/num.blocks.since.spam
# Don't do this because the number of blocks after start.spam.height in
# non.spam.fingerprint.tx.sim is a little smaller than output.index:
# mean.non.spam.kb.per.block <- mean.coinbase.tx.size/1000 +
# (sum(non.spam.fingerprint.tx.sim[block_height >= start.spam.height, tx_weight_bytes.sim/uniqueN(block_height)]))/1000
# mean.non.spam.output.per.block <- non.spam.fingerprint[block_height >= start.spam.height, .N/uniqueN(block_height)]
mean.effective.ring.size <- ring.size.sim
simulated.adversary.owned.outputs <- 0
mean.kb.per.block <- mean.non.spam.kb.per.block
block.size <- mean.non.spam.kb.per.block
mean.kb.per.block.data <- vector("numeric", 100000)
mean.effective.ring.size.data <- vector("numeric", 100000)
median.effective.ring.size.data <- vector("numeric", 100000)
simulated.adversary.owned.share.data <- vector("numeric", 100000)
i <- 0
# while (mean.effective.ring.size >= 2) {
while (mean.kb.per.block <= 3000) {
i <- i + 1
simulated.adversary.owned.share <- simulated.adversary.owned.outputs/(simulated.adversary.owned.outputs + mean.non.spam.output.per.block)
mean.effective.ring.size <- 1 + (ring.size.sim - 1) * (1 - simulated.adversary.owned.share)
mean.kb.per.block.data[i] <- mean.kb.per.block
mean.effective.ring.size.data[i] <- mean.effective.ring.size
median.effective.ring.size.data[i] <- 1 + qbinom(0.5, size = ring.size.sim - 1, prob = 1 - simulated.adversary.owned.share)
simulated.adversary.owned.share.data[i] <- simulated.adversary.owned.share
simulated.adversary.owned.outputs <- simulated.adversary.owned.outputs + 2
mean.kb.per.block <- mean.kb.per.block + mean.size.zero.ring.tx.size / 1000 + mean.size.one.ring.member * ring.size.sim / 1000
# Add adversary outputs at the end so the first iteration has zero adversary outputs
}
sim.spam <- data.table(mean.kb.per.block.data = mean.kb.per.block.data[seq_len(i)],
mean.effective.ring.size.data = mean.effective.ring.size.data[seq_len(i)],
median.effective.ring.size.data = median.effective.ring.size.data[seq_len(i)],
simulated.adversary.owned.share.data = simulated.adversary.owned.share.data[seq_len(i)],
ring.size.sim = ring.size.sim,
ring.size.sim.label = paste0(ring.size.sim, " (", round(mean.non.spam.kb.per.block), " kB non-spam)"))
sim.spam
})
sim.spam <- rbindlist(sim.spam)
max.ring.size.sim <- max(sim.spam$ring.size.sim)
png("projected-effective-ring-size-non-log.png", width = 600, height = 600)
ggplot(sim.spam, aes(x = mean.kb.per.block.data, y = mean.effective.ring.size.data, colour = ring.size.sim.label)) +
geom_line() +
scale_y_continuous(breaks = seq(2, max.ring.size.sim, by = 2), limits = c(0, NA), expand = c(0, 0)) +
scale_x_continuous(breaks = seq(0, 10000, by = 500), limits = c(0, NA), expand = c(0, 0)) +
ggtitle("Long-term projected mean effective ring size") +
xlab(" Block weight in kilobytes (10^3 bytes) github.com/Rucknium") +
ylab("Effective ring size") +
labs(colour = "Ring size") +
theme(legend.position = "top", legend.text = element_text(size = 12), legend.title = element_text(size = 15),
plot.title = element_text(size = 20),
plot.subtitle = element_text(size = 15),
axis.text = element_text(size = 15),
axis.title.x = element_text(size = 15, margin = margin(t = 10)),
axis.title.y = element_text(size = 15), strip.text = element_text(size = 15)) +
guides(colour = guide_legend(nrow = 2, byrow = FALSE, override.aes = list(linewidth = 5)))
dev.off()
min.mean.kb.per.block.data <- ceiling(min(sim.spam$mean.kb.per.block.data))
png("projected-effective-ring-size-log-log.png", width = 600, height = 600)
ggplot(sim.spam, aes(x = mean.kb.per.block.data, y = mean.effective.ring.size.data, colour = ring.size.sim.label)) +
geom_line() +
scale_y_log10(breaks = c(1, seq(2, max.ring.size.sim, by = 2)), limits = c(1, NA), expand = c(0, 0) ) +
scale_x_log10(breaks = c(min.mean.kb.per.block.data, seq(0, 10000, by = 250)), guide = guide_axis(angle = 90), expand = c(0, 0)) +
ggtitle("Long-term projected mean effective ring size (log-log scale)") +
xlab(" Block weight in kilobytes (10^3 bytes) (log scale) github.com/Rucknium") +
ylab("Effective ring size (log scale)") +
labs(colour = "Ring size") +
theme(legend.position = "top", legend.text = element_text(size = 12), legend.title = element_text(size = 15),
plot.title = element_text(size = 20),
plot.subtitle = element_text(size = 15),
axis.text = element_text(size = 15),
axis.title.x = element_text(size = 15, margin = margin(t = 10)),
axis.title.y = element_text(size = 15), strip.text = element_text(size = 15)) +
guides(colour = guide_legend(nrow = 2, byrow = FALSE, override.aes = list(linewidth = 5)))
dev.off()
png("projected-ring-size-one.png", width = 600, height = 600)
ggplot(sim.spam, aes(x = mean.kb.per.block.data,
y = dbinom(0, size = ring.size.sim - 1, prob = 1 - simulated.adversary.owned.share.data),
colour = ring.size.sim.label)) +
geom_line() +
scale_y_continuous( limits = c(0, 1), expand = c(0, 0), labels = scales::label_percent()) +
scale_x_continuous(breaks = seq(0, 10000, by = 250), limits = c(0, NA), expand = c(0, 0), guide = guide_axis(angle = 90)) +
ggtitle("Long-term projected share of rings with effective ring size 1") +
xlab(" Block weight in kilobytes (10^3 bytes) (log scale) github.com/Rucknium") +
ylab("Share of rings") +
labs(colour = "Ring size") +
theme(legend.position = "top", legend.text = element_text(size = 12), legend.title = element_text(size = 15),
plot.title = element_text(size = 20),
plot.subtitle = element_text(size = 15),
axis.text = element_text(size = 15),
axis.title.x = element_text(size = 15, margin = margin(t = 10)),
axis.title.y = element_text(size = 15), strip.text = element_text(size = 15)) +
guides(colour = guide_legend(nrow = 2, byrow = FALSE, override.aes = list(linewidth = 5)))
dev.off()