misc-research/Monero-Effective-Ring-Size/analysis/coinbase-reducing-effective-ring-size.R

91 lines
3.7 KiB
R
Raw Normal View History

library(data.table)
library(ggplot2)
# Need lubridate package installed too:
# install.packages("lubridate")
require(Cairo)
# Cairo is optional. Better image quality with Cairo
num.times.referenced <- unique(xmr.rings[, .(output_index, num_times_referenced)])
round(prop.table(table(num.times.referenced$num_times_referenced))*100, 2)
coinbase.ring.members.stats <- coinbase.ring.members.stats[grepl("202[1-9]", block_timestamp_ring.date.isoweek)]
# Only get data for 2021 and after
coinbase.ring.members.stats[, isoweek := as.factor(block_timestamp_ring.date.isoweek)]
lubridate::isoweek(as.Date("2022-08-15"))
hardfork <- "2022-33"
# Hard fork happened Saturday Aug 13 (ISO week "2022-33"). ISO week starts on Mondays
lubridate::isoweek(as.Date("2021-08-29"))
first.p2pool <- "2021-34"
# ISO week "2021-34"
# "The first Monero block found by P2Pool was 2437679 on August 29th, 2021."
# https://www.reddit.com/r/Monero/comments/x0jdb3/p2pools_first_anniversary_is_today/
lubridate::isoweek(as.Date("2023-03-18"))
p2pool.upgrade <- "2023-11"
# ISO week "2023-11"
# P2Pool side chain hard fork to make payouts more efficient (fewer outputs per coinbase tx)
# https://www.reddit.com/r/MoneroMining/comments/11tln6z/psa_p2pool_miners_update_to_the_latest_version/
gg.boilerplate <- ggplot(coinbase.ring.members.stats) +
geom_vline( aes(xintercept = which(unique(coinbase.ring.members.stats$isoweek) == first.p2pool),
colour = "purple"), size = 1.5, linetype = 2) +
geom_vline(aes(xintercept = which(unique(coinbase.ring.members.stats$isoweek) == hardfork),
colour = "#FF6600FF"), size = 1.5, linetype = 2) +
geom_vline( aes(xintercept = which(unique(coinbase.ring.members.stats$isoweek) == p2pool.upgrade),
colour = "darkgreen"), size = 1.5, linetype = 2) +
scale_color_manual(name = NULL,
labels = c("1st block mined by P2Pool", "Monero hard fork", "P2Pool payout efficiency upgrade"),
values = c("purple", "#FF6600FF", "darkgreen"),
breaks = c("purple", "#FF6600FF", "darkgreen")) +
xlab(" ISO Week github.com/Rucknium") +
ylab ("Effective ring size (ring size minus number of coinbase outputs in the ring)") +
scale_x_discrete(breaks = levels(coinbase.ring.members.stats$isoweek)[floor(seq(1,
nlevels(coinbase.ring.members.stats$isoweek),
length.out = 20))]) +
theme(plot.title = element_text(size = 20), legend.position = "top",
legend.text = element_text(size = 15),
axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
axis.text = element_text(size = 15),
axis.title.x = element_text(size = 15, margin = margin(t = 10)),
axis.title.y = element_text(size = 15), strip.text = element_text(size = 15))
png("Monero-Effective_ring_size/analysis/images/mean-effective-ring-size.png", width = 800, height = 800)
gg.boilerplate +
geom_line(aes(x = isoweek, y = effective.ring.size.mean, group = 1), size = 1.5) +
ggtitle("Mean Empirical Effective Ring Size")
dev.off()
png("Monero-Effective-Ring-Size/analysis/images/median-effective-ring-size.png", width = 800, height = 800)
gg.boilerplate +
geom_line(aes(x = isoweek, y = effective.ring.size.median, group = 1), size = 1.5) +
ggtitle("Median Empirical Effective Ring Size")
dev.off()
png("Monero-Effective-Ring-Size/analysis/images/5th-percentile-effective-ring-size.png", width = 800, height = 800)
gg.boilerplate +
geom_line(aes(x = isoweek, y = effective.ring.size.percentile.05, group = 1), size = 1.5) +
ggtitle('Empirical Effective Ring Size for the "Unluckiest" 5 Percent of Rings\n(i.e. 5th Percentile of Empirical Effective Ring Size)')
dev.off()