mirror of
https://github.com/Rucknium/misc-research.git
synced 2025-01-04 17:49:22 +00:00
198 lines
6.1 KiB
R
198 lines
6.1 KiB
R
|
|
||
|
|
||
|
library(data.table)
|
||
|
library(survey)
|
||
|
library(stargazer)
|
||
|
library(huxtable)
|
||
|
library(rvest)
|
||
|
|
||
|
|
||
|
SPACE <- read.csv("raw-data/SPACE_2022/SPACE_wide_2022.csv", stringsAsFactors = FALSE)
|
||
|
|
||
|
country.names <- matrix(c(
|
||
|
"CY", "Cyprus",
|
||
|
"MT", "Malta",
|
||
|
"BE", "Belgium",
|
||
|
"IT", "Italy",
|
||
|
"ES", "Spain",
|
||
|
"GR", "Greece",
|
||
|
"AT", "Austria",
|
||
|
"EE", "Estonia",
|
||
|
"FI", "Finland",
|
||
|
"IE", "Ireland",
|
||
|
"LT", "Lithuania",
|
||
|
"LU", "Luxembourg",
|
||
|
"LV", "Latvia",
|
||
|
"PT", "Portugal",
|
||
|
"SI", "Slovenia",
|
||
|
"SK", "Slovakia",
|
||
|
"FR", "France"
|
||
|
), ncol = 2, byrow = TRUE)
|
||
|
|
||
|
colnames(country.names) <- c("COUNTRY", "COUNTRY.name")
|
||
|
country.names <- as.data.frame(country.names)
|
||
|
|
||
|
SPACE <- merge(SPACE, country.names)
|
||
|
|
||
|
continuous.age <- matrix(c(
|
||
|
1, median(c(18, 24)),
|
||
|
2, median(c(25, 29)),
|
||
|
3, median(c(30, 34)),
|
||
|
4, median(c(35, 39)),
|
||
|
5, median(c(40, 44)),
|
||
|
6, median(c(45, 49)),
|
||
|
7, median(c(50, 54)),
|
||
|
8, median(c(55, 59)),
|
||
|
9, median(c(60, 64)),
|
||
|
10, median(c(64, 69)),
|
||
|
11, median(c(70, 74)),
|
||
|
12, 85),
|
||
|
ncol = 2, byrow = TRUE)
|
||
|
|
||
|
colnames(continuous.age) <- c("AGE", "Age")
|
||
|
continuous.age <- as.data.frame(continuous.age)
|
||
|
|
||
|
SPACE <- merge(SPACE, continuous.age)
|
||
|
|
||
|
colnames(continuous.age) <- c("AGE", "Age")
|
||
|
continuous.age <- as.data.frame(continuous.age)
|
||
|
|
||
|
SPACE <- merge(SPACE, continuous.age)
|
||
|
|
||
|
SPACE$Gender <- factor(SPACE$D1, level = 1:3, labels = c("Male", "Female", "Other, non-binary"))
|
||
|
SPACE$Gender <- relevel(SPACE$Gender, "Female")
|
||
|
|
||
|
|
||
|
cash.reserves.amount <- c(
|
||
|
"Less than €100",
|
||
|
"€100 - €250",
|
||
|
"€250 - €500",
|
||
|
"€500 - €1,000",
|
||
|
"€1,000 - €5,000",
|
||
|
"€5,000 - €10,000",
|
||
|
"More than €10,000"
|
||
|
)
|
||
|
|
||
|
SPACE$cash.reserves.amount <- factor(SPACE$QQ10, level = 1:7, labels = cash.reserves.amount)
|
||
|
|
||
|
SPACE$cash.reserves.any <- factor(SPACE$QQ9, level = 0:1, labels = c("No", "Yes"))
|
||
|
|
||
|
SPACE$cash.reserves <- ifelse(SPACE$cash.reserves.any == "Yes",
|
||
|
as.character(SPACE$cash.reserves.amount), "€0")
|
||
|
|
||
|
SPACE$cash.reserves <- as.factor(SPACE$cash.reserves)
|
||
|
|
||
|
setDT(SPACE)
|
||
|
|
||
|
SPACE[, has.crypto := factor(QQ1A_3, levels = 0:1, labels = c("No", "Yes"))]
|
||
|
|
||
|
SPACE[, crypto.use := factor(QQ1B, levels = 0:3, labels = c("None", "Investment", "Payment", "Both"))]
|
||
|
SPACE[is.na(crypto.use), crypto.use := "None"]
|
||
|
|
||
|
table(SPACE$crypto.use)
|
||
|
table(SPACE$has.crypto)
|
||
|
|
||
|
|
||
|
SPACE[, has.payment.account := factor(QQ1A_1, labels = c("No", "Yes"))]
|
||
|
SPACE[, has.card := factor(QQ1A_2, labels = c("No", "Yes"))]
|
||
|
|
||
|
SPACE[, has.financial.investments := factor(D10_6, labels = c("No", "Yes"))]
|
||
|
|
||
|
SPACE[, has.savings.account := factor(D10_3, labels = c("No", "Yes"))]
|
||
|
|
||
|
SPACE[, PaymentPreference := factor(QQ3, levels = c(3, 1:2), labels = c("No preference", "Cash", "Cashless"))]
|
||
|
# Put no preference first so it is the contrast level
|
||
|
|
||
|
SPACE[, "cash.wide.acceptance" := factor(QQ13A_1, labels = c("No", "Yes"))]
|
||
|
SPACE[, "cash.faster" := factor(QQ13A_2, labels = c("No", "Yes"))]
|
||
|
SPACE[, "cash.privacy" := factor(QQ13A_3, labels = c("No", "Yes"))]
|
||
|
SPACE[, "cash.easier" := factor(QQ13A_4, labels = c("No", "Yes"))]
|
||
|
SPACE[, "cash.safer" := factor(QQ13A_5, labels = c("No", "Yes"))]
|
||
|
SPACE[, "cash.immediately.settled" := factor(QQ13A_6, labels = c("No", "Yes"))]
|
||
|
SPACE[, "cash.spending.awareness" := factor(QQ13A_7, labels = c("No", "Yes"))]
|
||
|
SPACE[, "cash.other" := factor(QQ13A_8, labels = c("No", "Yes"))]
|
||
|
SPACE[, "cash.no.use" := factor(QQ13A_9, labels = c("No", "Yes"))]
|
||
|
SPACE[, "cash.none" := factor(QQ13A_10, labels = c("No", "Yes"))]
|
||
|
|
||
|
|
||
|
|
||
|
SPACE.survey <- svydesign(ids = ~ID, data = SPACE, weights = SPACE$Gross_weight)
|
||
|
|
||
|
saveRDS(SPACE.survey, file = "processed-data/SPACE.rds")
|
||
|
|
||
|
|
||
|
# Load the data again to get the diary data
|
||
|
|
||
|
space <- read.csv("raw-data/SPACE_2022/SPACE_wide_2022.csv", stringsAsFactors = FALSE)
|
||
|
|
||
|
|
||
|
setDT(space)
|
||
|
|
||
|
space.diary <- melt(space[, c("ID", "D1", "AGE", "WEEKDAY", "COUNTRY", "Gross_weight", colnames(space)[grepl("^QB", colnames(space))]), with = FALSE],
|
||
|
measure.vars = patterns(purpose = "^QB1", value = "^QB3", instrument = "^QB4"))
|
||
|
|
||
|
|
||
|
|
||
|
SPACE.diary <- melt(SPACE[, c("ID", "D1", "AGE", "WEEKDAY", "COUNTRY", "Gross_weight", colnames(SPACE)[grepl("^QB", colnames(SPACE))]), with = FALSE],
|
||
|
measure.vars = patterns(purpose = "^QB1", value = "^QB3", instrument = "^QB4"))
|
||
|
|
||
|
|
||
|
purpose.label <- c("Clothes/sportswear",
|
||
|
"Electronic goods/household appliances",
|
||
|
"Food/daily supplies",
|
||
|
"Medicine/cosmetics/drugstore products",
|
||
|
"Media/games/entertainment",
|
||
|
"Charitable donations",
|
||
|
"Travel/accommodation",
|
||
|
"Furniture/other household items",
|
||
|
"Tickets for events/attractions",
|
||
|
"Luxury goods",
|
||
|
"Financial: insurance, investment, crypto-assets",
|
||
|
"Household related services",
|
||
|
"Other")
|
||
|
|
||
|
|
||
|
|
||
|
SPACE.diary <- SPACE.diary[complete.cases(SPACE.diary), ]
|
||
|
SPACE.diary[purpose == 999999, purpose := NA]
|
||
|
SPACE.diary[value == 999999, value := NA]
|
||
|
SPACE.diary[instrument == 999999, instrument := NA]
|
||
|
|
||
|
SPACE.diary[, D1 := factor(D1)]
|
||
|
SPACE.diary[, AGE := factor(AGE)]
|
||
|
SPACE.diary[, WEEKDAY := factor(WEEKDAY)]
|
||
|
SPACE.diary[, COUNTRY := factor(COUNTRY)]
|
||
|
SPACE.diary[, purpose := factor(purpose, levels = seq_along(purpose.label), labels = purpose.label)]
|
||
|
SPACE.diary[, instrument := factor(instrument)]
|
||
|
|
||
|
SPACE.diary[, `Paid with crypto` := instrument == 10]
|
||
|
|
||
|
|
||
|
SPACE.diary.survey <- svydesign(ids = ~ID, data = SPACE.diary, weights = SPACE.diary$Gross_weight)
|
||
|
|
||
|
|
||
|
saveRDS(SPACE.diary.survey, file = "processed-data/SPACE_diary.rds")
|
||
|
|
||
|
|
||
|
# This computation takes a while
|
||
|
|
||
|
aggregate.crypto.spending.clustered <- as.data.frame(svyby(~I(365*value/1e+09), ~`Paid with crypto`,
|
||
|
design = as.svrepdesign(subset(SPACE.diary.survey,
|
||
|
purpose != "Financial: insurance, investment, crypto-assets")), svytotal))
|
||
|
|
||
|
aggregate.crypto.spending.clustered.CI <- aggregate.crypto.spending.clustered[2, 3] * 1.645
|
||
|
aggregate.crypto.spending.clustered[2, 2]
|
||
|
aggregate.crypto.spending.clustered[2, 2] + c(-1 * aggregate.crypto.spending.clustered.CI, aggregate.crypto.spending.clustered.CI)
|
||
|
|
||
|
aggregate.crypto.spending.clustered <- list(
|
||
|
point.estimate = aggregate.crypto.spending.clustered[2, 2],
|
||
|
CI.90.percent = aggregate.crypto.spending.clustered[2, 2] +
|
||
|
c(-1 * aggregate.crypto.spending.clustered.CI, aggregate.crypto.spending.clustered.CI)
|
||
|
)
|
||
|
|
||
|
saveRDS(aggregate.crypto.spending.clustered, file = "processed-data/EU-aggregate-crypto-spending.rds")
|
||
|
|
||
|
|
||
|
|
||
|
|