misc-research/Statistical-Monero-Logo/data-construction.R

93 lines
3.1 KiB
R
Raw Permalink Normal View History

2021-11-01 15:44:37 +00:00
# MIT License
# Copyright (c) 2021 Rucknium
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# install.packages("rsvg")
# install.packages("grImport2")
# install.packages("GoFKernel")
library(rsvg)
library(grImport2)
library(GoFKernel)
M.svg <- grImport2::readPicture(rawToChar(rsvg::rsvg_svg("monero file.svg")))
# From https://raw.githubusercontent.com/fluffypony/monero-logo-artefacts/master/Logo Subsequent%20Tweaks/monero%20file.svg
# https://github.com/fluffypony/monero-logo-artefacts/tree/master/Logo%20Subsequent%20Tweaks
M.svg.grob <- grImport2::pictureGrob(M.svg)
M.outline <- data.frame(
x = M.svg.grob$children[[1]]$children[[2]]$children[[2]]$x,
y = M.svg.grob$children[[1]]$children[[2]]$children[[2]]$y)
M.outline$y <- (-1) * M.outline$y + max(abs(M.outline$y))
y.min <- min(M.outline$y)
M.outline <- M.outline[(-1) * (which.min(M.outline$x) + 1):(which.max(M.outline$x) - 1), ]
M.outline <- M.outline[(-1) * c(1, 9), ]
M.outline$x <- M.outline$x - min(M.outline$x)
M.outline$x <- M.outline$x / max(M.outline$x)
M.outline$x[2] <- M.outline$x[2] - 1e-10
M.outline$x[5] <- M.outline$x[5] + 1e-10
# Must add very small offset so that the non-unique x's are not dropped
M.outline$y <- M.outline$y / integrate(approxfun(M.outline), 0, 1)$value
M.pdf <- approxfun(M.outline)
M.cdf <- function(x) {
f.vectorized <- Vectorize(function(y) {integrate(approxfun(M.outline), 0, y)$value})
f.vectorized(x)
}
M.inverse.cdf <- Vectorize(GoFKernel::inverse(M.cdf, lower = 0, upper = 1))
xmr.orange <- M.svg.grob$children[[1]]$children[[1]]$gp$fill
# "#FF6600FF"
xmr.grey <- M.svg.grob$children[[1]]$children[[2]]$gp$fill
# "#4C4C4CFF"
save(M.outline, xmr.orange, xmr.grey, file = "logo-data.Rdata")
set.seed(314)
generated.logo.observations <- M.inverse.cdf(runif(10))
# Running this loop may take days since numerical integration is slow.
for ( i in 3:48) {
generated.logo.observations <-
c(generated.logo.observations, M.inverse.cdf(runif(floor(2^(i/2)))) )
save(generated.logo.observations, file = "generated-logo-observations.Rdata")
# When i = 48, y will be length 57280991
2021-11-04 12:05:23 +00:00
print(paste(i, length(generated.logo.observations) ))
2021-11-01 15:44:37 +00:00
}