gupaxx/src/helper.rs

932 lines
33 KiB
Rust

// Gupax - GUI Uniting P2Pool And XMRig
//
// Copyright (c) 2022 hinto-janaiyo
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
// This file represents the "helper" thread, which is the full separate thread
// that runs alongside the main [App] GUI thread. It exists for the entire duration
// of Gupax so that things can be handled without locking up the GUI thread.
//
// This thread is a continual 1 second loop, collecting available jobs on the
// way down and (if possible) asynchronously executing them at the very end.
//
// The main GUI thread will interface with this thread by mutating the Arc<Mutex>'s
// found here, e.g: User clicks [Start P2Pool] -> Arc<Mutex<ProcessSignal> is set
// indicating to this thread during its loop: "I should start P2Pool!", e.g:
//
// match p2pool.lock().unwrap().signal {
// ProcessSignal::Start => start_p2pool(),
// ...
// }
//
// This also includes all things related to handling the child processes (P2Pool/XMRig):
// piping their stdout/stderr/stdin, accessing their APIs (HTTP + disk files), etc.
//---------------------------------------------------------------------------------------------------- Import
use std::{
sync::{Arc,Mutex},
path::PathBuf,
process::{Command,Stdio},
fmt::Write,
time::*,
thread,
};
use serde::{Serialize,Deserialize};
use crate::constants::*;
use num_format::{Buffer,Locale};
use log::*;
//---------------------------------------------------------------------------------------------------- Constants
const LOCALE: num_format::Locale = num_format::Locale::en;
//---------------------------------------------------------------------------------------------------- [Helper] Struct
// A meta struct holding all the data that gets processed in this thread
pub struct Helper {
pub instant: Instant, // Gupax start as an [Instant]
pub human_time: HumanTime, // Gupax uptime formatting for humans
pub p2pool: Arc<Mutex<Process>>, // P2Pool process state
pub xmrig: Arc<Mutex<Process>>, // XMRig process state
pub pub_api_p2pool: Arc<Mutex<PubP2poolApi>>, // P2Pool API state (for GUI/Helper thread)
pub pub_api_xmrig: Arc<Mutex<PubXmrigApi>>, // XMRig API state (for GUI/Helper thread)
priv_api_p2pool: Arc<Mutex<PrivP2poolApi>>, // For "watchdog" thread
priv_api_xmrig: Arc<Mutex<PrivXmrigApi>>, // For "watchdog" thread
}
//---------------------------------------------------------------------------------------------------- [Process] Struct
// This holds all the state of a (child) process.
// The main GUI thread will use this to display console text, online state, etc.
pub struct Process {
pub name: ProcessName, // P2Pool or XMRig?
pub state: ProcessState, // The state of the process (alive, dead, etc)
pub signal: ProcessSignal, // Did the user click [Start/Stop/Restart]?
pub start: Instant, // Start time of process
pub uptime: HumanTime, // Human readable process uptime
// STDIN Problem:
// - User can input many many commands in 1 second
// - The process loop only processes every 1 second
// - If there is only 1 [String] holding the user input,
// the user could overwrite their last input before
// the loop even has a chance to process their last command
// STDIN Solution:
// - When the user inputs something, push it to a [Vec]
// - In the process loop, loop over every [Vec] element and
// send each one individually to the process stdin
//
pub input: Vec<String>,
// The below are the handles to the actual child process.
// [Simple] has no STDIN, but [Advanced] does. A PTY (pseudo-terminal) is
// required for P2Pool/XMRig to open their STDIN pipe, so whether [child]
// or [child_pty] actually has a [Some] depends on the users setting.
// [Simple]
child: Option<Arc<Mutex<tokio::process::Child>>>,
stdout: Option<tokio::process::ChildStdout>, // Handle to STDOUT pipe
stderr: Option<tokio::process::ChildStderr>, // Handle to STDERR pipe
// [Advanced] (PTY)
child_pty: Option<Arc<Mutex<Box<dyn portable_pty::Child + Send + std::marker::Sync>>>>, // STDOUT/STDERR is combined automatically thanks to this PTY, nice
stdin: Option<Box<dyn portable_pty::MasterPty + Send>>, // A handle to the process's MasterPTY/STDIN
// This is the process's private output [String], used by both [Simple] and [Advanced].
// The "watchdog" threads mutate this, the "helper" thread synchronizes the [Pub*Api] structs
// so that the data in here is cloned there roughly once a second. GUI thread never touches this.
output: String,
}
//---------------------------------------------------------------------------------------------------- [Process] Impl
impl Process {
pub fn new(name: ProcessName, args: String, path: PathBuf) -> Self {
let now = Instant::now();
Self {
name,
state: ProcessState::Dead,
signal: ProcessSignal::None,
start: now,
uptime: HumanTime::into_human(now.elapsed()),
stdout: Option::None,
stderr: Option::None,
stdin: Option::None,
child: Option::None,
child_pty: Option::None,
// P2Pool log level 1 produces a bit less than 100,000 lines a day.
// Assuming each line averages 80 UTF-8 scalars (80 bytes), then this
// initial buffer should last around a week (56MB) before resetting.
output: String::with_capacity(56_000_000),
input: vec![String::new()],
}
}
// Borrow a [&str], return an owned split collection
pub fn parse_args(args: &str) -> Vec<String> {
args.split_whitespace().map(|s| s.to_owned()).collect()
}
}
//---------------------------------------------------------------------------------------------------- [Process*] Enum
#[derive(Copy,Clone,Eq,PartialEq,Debug)]
pub enum ProcessState {
Alive, // Process is online, GREEN!
Dead, // Process is dead, BLACK!
Failed, // Process is dead AND exited with a bad code, RED!
Middle, // Process is in the middle of something (starting, stopping, etc), YELLOW!
}
#[derive(Copy,Clone,Eq,PartialEq,Debug)]
pub enum ProcessSignal {
None,
Start,
Stop,
Restart,
}
#[derive(Copy,Clone,Eq,PartialEq,Debug)]
pub enum ProcessName {
P2pool,
Xmrig,
}
impl std::fmt::Display for ProcessState { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { write!(f, "{:#?}", self) } }
impl std::fmt::Display for ProcessSignal { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { write!(f, "{:#?}", self) } }
impl std::fmt::Display for ProcessName { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { write!(f, "{:#?}", self) } }
//---------------------------------------------------------------------------------------------------- [Helper]
use tokio::io::{BufReader,AsyncBufReadExt};
impl Helper {
//---------------------------------------------------------------------------------------------------- General Functions
pub fn new(instant: std::time::Instant, pub_api_p2pool: Arc<Mutex<PubP2poolApi>>, pub_api_xmrig: Arc<Mutex<PubXmrigApi>>) -> Self {
Self {
instant,
human_time: HumanTime::into_human(instant.elapsed()),
p2pool: Arc::new(Mutex::new(Process::new(ProcessName::P2pool, String::new(), PathBuf::new()))),
xmrig: Arc::new(Mutex::new(Process::new(ProcessName::Xmrig, String::new(), PathBuf::new()))),
priv_api_p2pool: Arc::new(Mutex::new(PrivP2poolApi::new())),
priv_api_xmrig: Arc::new(Mutex::new(PrivXmrigApi::new())),
// These are created when initializing [App], since it needs a handle to it as well
pub_api_p2pool,
pub_api_xmrig,
}
}
// The tokio runtime that blocks while async reading both STDOUT/STDERR
// Cheaper than spawning 2 OS threads just to read 2 pipes (...right? :D)
#[tokio::main]
async fn async_read_stdout_stderr(process: Arc<Mutex<Process>>) {
let process_stdout = Arc::clone(&process);
let process_stderr = Arc::clone(&process);
let stdout = process.lock().unwrap().child.as_ref().unwrap().lock().unwrap().stdout.take().unwrap();
let stderr = process.lock().unwrap().child.as_ref().unwrap().lock().unwrap().stderr.take().unwrap();
// Create STDOUT pipe job
let stdout_job = tokio::spawn(async move {
let mut reader = BufReader::new(stdout).lines();
while let Ok(Some(line)) = reader.next_line().await {
println!("{}", line); // For debugging.
writeln!(process_stdout.lock().unwrap().output, "{}", line);
}
});
// Create STDERR pipe job
let stderr_job = tokio::spawn(async move {
let mut reader = BufReader::new(stderr).lines();
while let Ok(Some(line)) = reader.next_line().await {
println!("{}", line); // For debugging.
writeln!(process_stderr.lock().unwrap().output, "{}", line);
}
});
// Block and read both until they are closed (automatic when process dies)
// The ordering of STDOUT/STDERR should be automatic thanks to the locks.
tokio::join![stdout_job, stderr_job];
}
// Reads a PTY which combines STDOUT/STDERR for me, yay
fn read_pty(process: Arc<Mutex<Process>>, reader: Box<dyn std::io::Read + Send>) {
use std::io::BufRead;
let mut stdout = std::io::BufReader::new(reader).lines();
while let Some(Ok(line)) = stdout.next() {
println!("{}", line); // For debugging.
writeln!(process.lock().unwrap().output, "{}", line);
}
}
//---------------------------------------------------------------------------------------------------- P2Pool specific
// Intermediate function that parses the arguments, and spawns the P2Pool watchdog thread.
pub fn spawn_p2pool(helper: &Arc<Mutex<Self>>, state: &crate::disk::P2pool, path: std::path::PathBuf) {
let mut args = Vec::with_capacity(500);
let path = path.clone();
let mut api_path = path.clone();
api_path.pop();
// [Simple]
if state.simple {
// Build the p2pool argument
let (ip, rpc, zmq) = crate::node::enum_to_ip_rpc_zmq_tuple(state.node); // Get: (IP, RPC, ZMQ)
args.push("--wallet".to_string()); args.push(state.address.clone()); // Wallet address
args.push("--host".to_string()); args.push(ip.to_string()); // IP Address
args.push("--rpc-port".to_string()); args.push(rpc.to_string()); // RPC Port
args.push("--zmq-port".to_string()); args.push(zmq.to_string()); // ZMQ Port
args.push("--data-api".to_string()); args.push(api_path.display().to_string()); // API Path
args.push("--local-api".to_string()); // Enable API
args.push("--no-color".to_string()); // Remove color escape sequences, Gupax terminal can't parse it :(
args.push("--mini".to_string()); // P2Pool Mini
// [Advanced]
} else {
// Overriding command arguments
if !state.arguments.is_empty() {
for arg in state.arguments.split_whitespace() {
args.push(arg.to_string());
}
// Else, build the argument
} else {
args.push(state.address.clone()); // Wallet
args.push(state.selected_ip.clone()); // IP
args.push(state.selected_rpc.clone()); // RPC
args.push(state.selected_zmq.clone()); // ZMQ
args.push("--local-api".to_string()); // Enable API
args.push("--no-color".to_string()); // Remove color escape sequences
if state.mini { args.push("--mini".to_string()); }; // Mini
args.push(format!("--loglevel {}", state.log_level)); // Log Level
args.push(format!("--out-peers {}", state.out_peers)); // Out Peers
args.push(format!("--in-peers {}", state.in_peers)); // In Peers
args.push(format!("--data-api {}", api_path.display())); // API Path
}
}
// Print arguments to console
crate::disk::print_dash(&format!("P2Pool | Launch arguments ... {:#?}", args));
// Spawn watchdog thread
let simple = !state.simple; // Will this process need a PTY (STDIN)?
let process = Arc::clone(&helper.lock().unwrap().p2pool);
let pub_api = Arc::clone(&helper.lock().unwrap().pub_api_p2pool);
let priv_api = Arc::clone(&helper.lock().unwrap().priv_api_p2pool);
thread::spawn(move || {
if simple {
Self::spawn_simple_p2pool_watchdog(process, pub_api, priv_api, args, path);
} else {
Self::spawn_pty_p2pool_watchdog(process, pub_api, priv_api, args, path);
}
});
}
// The [Simple] P2Pool watchdog tokio runtime, using async features with no PTY (STDIN).
#[tokio::main]
async fn spawn_simple_p2pool_watchdog(process: Arc<Mutex<Process>>, pub_api: Arc<Mutex<PubP2poolApi>>, priv_api: Arc<Mutex<PrivP2poolApi>>, args: Vec<String>, path: std::path::PathBuf) {
// 1a. Create command
let child = Arc::new(Mutex::new(tokio::process::Command::new(path)
.args(args)
.stdout(Stdio::piped())
.stderr(Stdio::piped())
.stdin(Stdio::piped())
.spawn().unwrap()));
// 2. Set process state
let mut lock = process.lock().unwrap();
lock.state = ProcessState::Alive;
lock.signal = ProcessSignal::None;
lock.start = Instant::now();
lock.child = Some(Arc::clone(&child));
drop(lock);
// 3. Spawn STDOUT/STDERR thread
let process_clone = Arc::clone(&process);
thread::spawn(move || {
Self::async_read_stdout_stderr(process_clone);
});
// 4. Loop forever as watchdog until process dies
loop {
// a. Watch user SIGNAL
if process.lock().unwrap().signal == ProcessSignal::Stop {
process.lock().unwrap().child.as_mut().unwrap().lock().unwrap().kill().await;
process.lock().unwrap().signal = ProcessSignal::None;
}
// let signal = match process.lock().unwrap().signal {
// ProcessSignal::Stop => { crate::disk::print_dash("KILLING P2POOL"); process.lock().unwrap().child.as_mut().unwrap().lock().unwrap().kill().await.unwrap() },
// ProcessSignal::Restart => process.lock().unwrap().child.as_mut().unwrap().lock().unwrap().kill().await,
// _ => Ok(()),
// };
// b. Create STDIN task
if !process.lock().unwrap().input.is_empty() { /* process it */ }
// c. Create API task
let async_file_read = { /* tokio async file read job */ };
// d. Execute async tasks
// tokio::join![signal];
// f. Sleep (900ms)
std::thread::sleep(MILLI_900);
}
}
// The [Advanced] P2Pool watchdog. Spawns 1 OS thread for reading a PTY (STDOUT+STDERR), and combines the [Child] with a PTY so STDIN actually works.
#[tokio::main]
async fn spawn_pty_p2pool_watchdog(process: Arc<Mutex<Process>>, pub_api: Arc<Mutex<PubP2poolApi>>, priv_api: Arc<Mutex<PrivP2poolApi>>, args: Vec<String>, path: std::path::PathBuf) {
// 1a. Create PTY
let pty = portable_pty::native_pty_system();
let mut pair = pty.openpty(portable_pty::PtySize {
rows: 24,
cols: 80,
pixel_width: 0,
pixel_height: 0,
}).unwrap();
// 1b. Create command
let mut cmd = portable_pty::CommandBuilder::new(path);
cmd.args(args);
// 1c. Create child
let child_pty = Arc::new(Mutex::new(pair.slave.spawn_command(cmd).unwrap()));
// 2. Set process state
let mut lock = process.lock().unwrap();
lock.state = ProcessState::Alive;
lock.signal = ProcessSignal::None;
lock.start = Instant::now();
lock.child_pty = Some(Arc::clone(&child_pty));
let reader = pair.master.try_clone_reader().unwrap(); // Get STDOUT/STDERR before moving the PTY
lock.stdin = Some(pair.master);
drop(lock);
// 3. Spawn PTY read thread
let process_clone = Arc::clone(&process);
thread::spawn(move || {
Self::read_pty(process_clone, reader);
});
// 4. Loop as watchdog
loop {
// Set timer
let now = Instant::now();
// Check SIGNAL
if process.lock().unwrap().signal == ProcessSignal::Stop {
child_pty.lock().unwrap().kill(); // This actually sends a SIGHUP to p2pool (closes the PTY, hangs up on p2pool)
// Wait to get the exit status
let exit_status = match child_pty.lock().unwrap().wait() {
Ok(e) => if e.success() { "Successful" } else { "Failed" },
_ => "Unknown Error",
};
let mut lock = process.lock().unwrap();
let uptime = lock.uptime.clone();
info!("P2Pool | Stopped ... Uptime was: [{}], Exit status: [{}]", uptime, exit_status);
writeln!(lock.output, "{}\nP2Pool stopped | Uptime: [{}] | Exit status: [{}]\n{}\n\n", HORI_DOUBLE, uptime, exit_status, HORI_DOUBLE);
lock.signal = ProcessSignal::None;
break
}
// Check vector of user input
let mut lock = process.lock().unwrap();
if !lock.input.is_empty() {
let input = std::mem::take(&mut lock.input);
for line in input {
writeln!(lock.stdin.as_mut().unwrap(), "{}", line);
}
}
drop(lock);
// Sleep (only if 900ms hasn't passed)
let elapsed = now.elapsed().as_millis();
// Since logic goes off if less than 1000, casting should be safe
if elapsed < 900 { std::thread::sleep(std::time::Duration::from_millis((900-elapsed) as u64)); }
}
// 5. If loop broke, we must be done here.
info!("P2Pool | Watchdog thread exiting... Goodbye!");
}
//---------------------------------------------------------------------------------------------------- XMRig specific
// Intermediate function that parses the arguments, and spawns the XMRig watchdog thread.
pub fn spawn_xmrig(state: &crate::disk::Xmrig, api_path: &std::path::Path) {
let mut args = Vec::with_capacity(500);
if state.simple {
let rig_name = if state.simple_rig.is_empty() { GUPAX_VERSION.to_string() } else { state.simple_rig.clone() }; // Rig name
args.push(format!("--threads {}", state.current_threads)); // Threads
args.push(format!("--user {}", state.simple_rig)); // Rig name
args.push(format!("--url 127.0.0.1:3333")); // Local P2Pool (the default)
args.push("--no-color".to_string()); // No color escape codes
if state.pause != 0 { args.push(format!("--pause-on-active {}", state.pause)); } // Pause on active
} else {
if !state.arguments.is_empty() {
for arg in state.arguments.split_whitespace() {
args.push(arg.to_string());
}
} else {
args.push(format!("--user {}", state.address.clone())); // Wallet
args.push(format!("--threads {}", state.current_threads)); // Threads
args.push(format!("--rig-id {}", state.selected_rig)); // Rig ID
args.push(format!("--url {}:{}", state.selected_ip.clone(), state.selected_port.clone())); // IP/Port
args.push(format!("--http-host {}", state.api_ip).to_string()); // HTTP API IP
args.push(format!("--http-port {}", state.api_port).to_string()); // HTTP API Port
args.push("--no-color".to_string()); // No color escape codes
if state.tls { args.push("--tls".to_string()); } // TLS
if state.keepalive { args.push("--keepalive".to_string()); } // Keepalive
if state.pause != 0 { args.push(format!("--pause-on-active {}", state.pause)); } // Pause on active
}
}
// Print arguments to console
crate::disk::print_dash(&format!("XMRig | Launch arguments ... {:#?}", args));
// Spawn watchdog thread
thread::spawn(move || {
Self::spawn_xmrig_watchdog(args);
});
}
// The actual XMRig watchdog tokio runtime.
#[tokio::main]
pub async fn spawn_xmrig_watchdog(args: Vec<String>) {
}
//---------------------------------------------------------------------------------------------------- The "helper"
// Intermediate function that spawns the helper thread.
pub fn spawn_helper(helper: &Arc<Mutex<Self>>) {
let helper = Arc::clone(helper);
thread::spawn(move || { Self::helper(helper); });
}
// [helper] = Actual Arc
// [h] = Temporary lock that gets dropped
// [jobs] = Vector of async jobs ready to go
// #[tokio::main]
pub fn helper(helper: Arc<Mutex<Self>>) {
// Begin loop
loop {
// 1. Create "jobs" vector holding async tasks
// let jobs: Vec<tokio::task::JoinHandle<Result<(), anyhow::Error>>> = vec![];
// 2. Loop init timestamp
let start = Instant::now();
// 7. Set Gupax/P2Pool/XMRig uptime
let mut h = helper.lock().unwrap();
h.human_time = HumanTime::into_human(h.instant.elapsed());
drop(h);
// 8. Calculate if we should sleep or not.
// If we should sleep, how long?
let elapsed = start.elapsed().as_millis();
if elapsed < 1000 {
// Casting from u128 to u64 should be safe here, because [elapsed]
// is less than 1000, meaning it can fit into a u64 easy.
std::thread::sleep(std::time::Duration::from_millis((1000-elapsed) as u64));
}
// 9. End loop
}
}
}
//---------------------------------------------------------------------------------------------------- [HumanTime]
// This converts a [std::time::Duration] into something more readable.
// Used for uptime display purposes: [7 years, 8 months, 15 days, 23 hours, 35 minutes, 1 second]
// Code taken from [https://docs.rs/humantime/] and edited to remove sub-second time, change spacing and some words.
use std::time::Duration;
#[derive(Debug, Clone)]
pub struct HumanTime(Duration);
impl HumanTime {
pub fn into_human(d: Duration) -> HumanTime {
HumanTime(d)
}
fn plural(f: &mut std::fmt::Formatter, started: &mut bool, name: &str, value: u64) -> std::fmt::Result {
if value > 0 {
if *started { f.write_str(" ")?; }
}
write!(f, "{}{}", value, name)?;
if value > 1 {
f.write_str("s")?;
}
*started = true;
Ok(())
}
}
impl std::fmt::Display for HumanTime {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let secs = self.0.as_secs();
if secs == 0 {
f.write_str("0s")?;
return Ok(());
}
let years = secs / 31_557_600; // 365.25d
let ydays = secs % 31_557_600;
let months = ydays / 2_630_016; // 30.44d
let mdays = ydays % 2_630_016;
let days = mdays / 86400;
let day_secs = mdays % 86400;
let hours = day_secs / 3600;
let minutes = day_secs % 3600 / 60;
let seconds = day_secs % 60;
let ref mut started = false;
Self::plural(f, started, " year", years)?;
Self::plural(f, started, " month", months)?;
Self::plural(f, started, " day", days)?;
Self::plural(f, started, " hour", hours)?;
Self::plural(f, started, " minute", minutes)?;
Self::plural(f, started, " second", seconds)?;
Ok(())
}
}
//---------------------------------------------------------------------------------------------------- [HumanNumber]
// Human readable numbers.
// Float | [1234.57] -> [1,234] | Casts as u64/u128, adds comma
// Unsigned | [1234567] -> [1,234,567] | Adds comma
// Percent | [99.123] -> [99.12%] | Truncates to 2 after dot, adds percent
// Percent | [0.001] -> [0%] | Rounds down, removes redundant zeros
// Hashrate | [123.0, 311.2, null] -> [123, 311, ???] | Casts, replaces null with [???]
// CPU Load | [12.0, 11.4, null] -> [12.0, 11.4, ???] | No change, just into [String] form
#[derive(Debug, Clone)]
pub struct HumanNumber(String);
impl std::fmt::Display for HumanNumber {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}", &self.0)
}
}
impl HumanNumber {
fn unknown() -> Self {
Self("???".to_string())
}
fn to_percent(f: f32) -> Self {
if f < 0.01 {
Self("0%".to_string())
} else {
Self(format!("{:.2}%", f))
}
}
fn from_f32(f: f32) -> Self {
let mut buf = num_format::Buffer::new();
buf.write_formatted(&(f as u64), &LOCALE);
Self(buf.as_str().to_string())
}
fn from_f64(f: f64) -> Self {
let mut buf = num_format::Buffer::new();
buf.write_formatted(&(f as u128), &LOCALE);
Self(buf.as_str().to_string())
}
fn from_u8(u: u8) -> Self {
let mut buf = num_format::Buffer::new();
buf.write_formatted(&u, &LOCALE);
Self(buf.as_str().to_string())
}
fn from_u16(u: u16) -> Self {
let mut buf = num_format::Buffer::new();
buf.write_formatted(&u, &LOCALE);
Self(buf.as_str().to_string())
}
fn from_u32(u: u32) -> Self {
let mut buf = num_format::Buffer::new();
buf.write_formatted(&u, &LOCALE);
Self(buf.as_str().to_string())
}
fn from_u64(u: u64) -> Self {
let mut buf = num_format::Buffer::new();
buf.write_formatted(&u, &LOCALE);
Self(buf.as_str().to_string())
}
fn from_u128(u: u128) -> Self {
let mut buf = num_format::Buffer::new();
buf.write_formatted(&u, &LOCALE);
Self(buf.as_str().to_string())
}
fn from_hashrate(array: [Option<f32>; 3]) -> Self {
let mut string = "[".to_string();
let mut buf = num_format::Buffer::new();
let mut n = 0;
for i in array {
match i {
Some(f) => {
let f = f as u128;
buf.write_formatted(&f, &LOCALE);
string.push_str(buf.as_str());
string.push_str(" H/s");
},
None => string.push_str("??? H/s"),
}
if n != 2 {
string.push_str(", ");
n += 1;
} else {
string.push(']');
break
}
}
Self(string)
}
fn from_load(array: [Option<f32>; 3]) -> Self {
let mut string = "[".to_string();
let mut n = 0;
for i in array {
match i {
Some(f) => string.push_str(format!("{}", f).as_str()),
None => string.push_str("???"),
}
if n != 2 {
string.push_str(", ");
n += 1;
} else {
string.push(']');
break
}
}
Self(string)
}
}
//---------------------------------------------------------------------------------------------------- Regexes
// Not to be confused with the [Regexes] struct in [main.rs], this one is meant
// for parsing the output of P2Pool and finding payouts and total XMR found.
// Why Regex instead of the standard library?
// 1. I'm already using Regex
// 2. It's insanely faster
//
// The following STDLIB implementation takes [0.003~] seconds to find all matches given a [String] with 30k lines:
// let mut n = 0;
// for line in P2POOL_OUTPUT.lines() {
// if line.contains("[0-9].[0-9]+ XMR") { n += 1; }
// }
//
// This regex function takes [0.0003~] seconds (10x faster):
// let regex = Regex::new("[0-9].[0-9]+ XMR").unwrap();
// let n = regex.find_iter(P2POOL_OUTPUT).count();
//
// Both are nominally fast enough where it doesn't matter too much but meh, why not use regex.
struct P2poolRegex {
xmr: regex::Regex,
}
impl P2poolRegex {
fn new() -> Self {
Self { xmr: regex::Regex::new("[0-9].[0-9]+ XMR").unwrap(), }
}
}
//---------------------------------------------------------------------------------------------------- Public P2Pool API
// GUI thread interfaces with this.
pub struct PubP2poolApi {
// One off
pub mini: bool,
// Output
pub output: String,
// These are manually parsed from the STDOUT.
pub payouts: u128,
pub payouts_hour: f64,
pub payouts_day: f64,
pub payouts_month: f64,
pub xmr: f64,
pub xmr_hour: f64,
pub xmr_day: f64,
pub xmr_month: f64,
// The rest are serialized from the API, then turned into [HumanNumber]s
pub hashrate_15m: HumanNumber,
pub hashrate_1h: HumanNumber,
pub hashrate_24h: HumanNumber,
pub shares_found: HumanNumber,
pub average_effort: HumanNumber,
pub current_effort: HumanNumber,
pub connections: HumanNumber,
}
impl PubP2poolApi {
pub fn new() -> Self {
Self {
mini: true,
output: String::with_capacity(56_000_000),
payouts: 0,
payouts_hour: 0.0,
payouts_day: 0.0,
payouts_month: 0.0,
xmr: 0.0,
xmr_hour: 0.0,
xmr_day: 0.0,
xmr_month: 0.0,
hashrate_15m: HumanNumber::unknown(),
hashrate_1h: HumanNumber::unknown(),
hashrate_24h: HumanNumber::unknown(),
shares_found: HumanNumber::unknown(),
average_effort: HumanNumber::unknown(),
current_effort: HumanNumber::unknown(),
connections: HumanNumber::unknown(),
}
}
// Mutate [PubP2poolApi] with data from a [PrivP2poolApi].
fn update_from_priv(self, output: String, regex: P2poolRegex, private: PrivP2poolApi, uptime: f64) -> Self {
// 1. Parse STDOUT
let (payouts, xmr) = Self::calc_payouts_and_xmr(&output, &regex);
let stdout_parse = Self {
output: output.clone(),
payouts,
xmr,
..self // <- So useful
};
// 2. Time calculations
let hour_day_month = Self::update_hour_day_month(stdout_parse, uptime);
// 3. Final priv -> pub conversion
Self {
hashrate_15m: HumanNumber::from_u128(private.hashrate_15m),
hashrate_1h: HumanNumber::from_u128(private.hashrate_1h),
hashrate_24h: HumanNumber::from_u128(private.hashrate_24h),
shares_found: HumanNumber::from_u128(private.shares_found),
average_effort: HumanNumber::to_percent(private.average_effort),
current_effort: HumanNumber::to_percent(private.current_effort),
connections: HumanNumber::from_u16(private.connections),
..hour_day_month // <- Holy cow this is so good
}
}
// Essentially greps the output for [x.xxxxxxxxxxxx XMR] where x = a number.
// It sums each match and counts along the way, handling an error by not adding and printing to console.
fn calc_payouts_and_xmr(output: &str, regex: &P2poolRegex) -> (u128 /* payout count */, f64 /* total xmr */) {
let mut iter = regex.xmr.find_iter(output);
let mut result: f64 = 0.0;
let mut count: u128 = 0;
for i in iter {
if let Some(text) = i.as_str().split_whitespace().next() {
match text.parse::<f64>() {
Ok(num) => result += num,
Err(e) => error!("P2Pool | Total XMR sum calculation error: [{}]", e),
}
count += 1;
}
}
(count, result)
}
// Updates the struct with hour/day/month calculations given an uptime in f64 seconds.
fn update_hour_day_month(self, elapsed: f64) -> Self {
// Payouts
let per_sec = (self.payouts as f64) / elapsed;
let payouts_hour = (per_sec * 60.0) * 60.0;
let payouts_day = payouts_hour * 24.0;
let payouts_month = payouts_day * 30.0;
// Total XMR
let per_sec = self.xmr / elapsed;
let xmr_hour = (per_sec * 60.0) * 60.0;
let xmr_day = payouts_hour * 24.0;
let xmr_month = payouts_day * 30.0;
Self {
payouts_hour,
payouts_day,
payouts_month,
xmr_hour,
xmr_day,
xmr_month,
..self
}
}
}
//---------------------------------------------------------------------------------------------------- Private P2Pool API
// This is the data the "watchdog" threads mutate.
// It matches directly to P2Pool's [local/stats] JSON API file (excluding a few stats).
// P2Pool seems to initialize all stats at 0 (or 0.0), so no [Option] wrapper seems needed.
#[derive(Debug, Serialize, Deserialize)]
struct PrivP2poolApi {
hashrate_15m: u128,
hashrate_1h: u128,
hashrate_24h: u128,
shares_found: u128,
average_effort: f32,
current_effort: f32,
connections: u16, // No one will have more than 65535 connections... right?
}
impl PrivP2poolApi {
fn new() -> Self {
Self {
hashrate_15m: 0,
hashrate_1h: 0,
hashrate_24h: 0,
shares_found: 0,
average_effort: 0.0,
current_effort: 0.0,
connections: 0,
}
}
}
//---------------------------------------------------------------------------------------------------- Public XMRig API
pub struct PubXmrigApi {
output: String,
worker_id: String,
resources: HumanNumber,
hashrate: HumanNumber,
pool: String,
diff: HumanNumber,
accepted: HumanNumber,
rejected: HumanNumber,
}
impl PubXmrigApi {
pub fn new() -> Self {
Self {
output: String::with_capacity(56_000_000),
worker_id: "???".to_string(),
resources: HumanNumber::unknown(),
hashrate: HumanNumber::unknown(),
pool: "???".to_string(),
diff: HumanNumber::unknown(),
accepted: HumanNumber::unknown(),
rejected: HumanNumber::unknown(),
}
}
// Formats raw private data into ready-to-print human readable version.
fn from_priv(private: PrivXmrigApi, output: String) -> Self {
Self {
output: output.clone(),
worker_id: private.worker_id,
resources: HumanNumber::from_load(private.resources.load_average),
hashrate: HumanNumber::from_hashrate(private.hashrate.total),
pool: private.connection.pool,
diff: HumanNumber::from_u128(private.connection.diff),
accepted: HumanNumber::from_u128(private.connection.accepted),
rejected: HumanNumber::from_u128(private.connection.rejected),
}
}
}
//---------------------------------------------------------------------------------------------------- Private XMRig API
// This matches to some JSON stats in the HTTP call [summary],
// e.g: [wget -qO- localhost:18085/1/summary].
// XMRig doesn't initialize stats at 0 (or 0.0) and instead opts for [null]
// which means some elements need to be wrapped in an [Option] or else serde will [panic!].
#[derive(Debug, Serialize, Deserialize)]
struct PrivXmrigApi {
worker_id: String,
resources: Resources,
connection: Connection,
hashrate: Hashrate,
}
impl PrivXmrigApi {
fn new() -> Self {
Self {
worker_id: String::new(),
resources: Resources::new(),
connection: Connection::new(),
hashrate: Hashrate::new(),
}
}
}
#[derive(Debug, Serialize, Deserialize)]
struct Resources {
load_average: [Option<f32>; 3],
}
impl Resources {
fn new() -> Self {
Self {
load_average: [Some(0.0), Some(0.0), Some(0.0)],
}
}
}
#[derive(Debug, Serialize, Deserialize)]
struct Connection {
pool: String,
diff: u128,
accepted: u128,
rejected: u128,
}
impl Connection {
fn new() -> Self {
Self {
pool: String::new(),
diff: 0,
accepted: 0,
rejected: 0,
}
}
}
#[derive(Debug, Serialize, Deserialize)]
struct Hashrate {
total: [Option<f32>; 3],
}
impl Hashrate {
fn new() -> Self {
Self {
total: [Some(0.0), Some(0.0), Some(0.0)],
}
}
}