gupaxx/src/helper.rs

328 lines
11 KiB
Rust
Raw Normal View History

// Gupax - GUI Uniting P2Pool And XMRig
//
// Copyright (c) 2022 hinto-janaiyo
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
// This file represents the "helper" thread, which is the full separate thread
// that runs alongside the main [App] GUI thread. It exists for the entire duration
// of Gupax so that things can be handled without locking up the GUI thread.
//
// This thread is a continual 1 second loop, collecting available jobs on the
// way down and (if possible) asynchronously executing them at the very end.
//
// The main GUI thread will interface with this thread by mutating the Arc<Mutex>'s
// found here, e.g: User clicks [Start P2Pool] -> Arc<Mutex<ProcessSignal> is set
// indicating to this thread during its loop: "I should start P2Pool!", e.g:
//
// match p2pool.lock().unwrap().signal {
// ProcessSignal::Start => start_p2pool(),
// ...
// }
//
// This also includes all things related to handling the child processes (P2Pool/XMRig):
// piping their stdout/stderr/stdin, accessing their APIs (HTTP + disk files), etc.
//---------------------------------------------------------------------------------------------------- Import
use std::{
sync::{Arc,Mutex},
path::PathBuf,
process::Command,
time::*,
thread,
};
use crate::constants::*;
use log::*;
//---------------------------------------------------------------------------------------------------- [Helper] Struct
// A meta struct holding all the data that gets processed in this thread
pub struct Helper {
instant: Instant, // Gupax start as an [Instant]
human_time: HumanTime, // Gupax uptime formatting for humans
p2pool: Process, // P2Pool process state
xmrig: Process, // XMRig process state
pub_api_p2pool: P2poolApi, // P2Pool API state
pub_api_xmrig: XmrigApi, // XMRig API state
// priv_api_p2pool:
// priv_api_xmrig:
}
// Impl found at the very bottom of this file.
//---------------------------------------------------------------------------------------------------- [Process] Struct
// This holds all the state of a (child) process.
// The main GUI thread will use this to display console text, online state, etc.
pub struct Process {
name: ProcessName, // P2Pool or XMRig?
state: ProcessState, // The state of the process (alive, dead, etc)
signal: ProcessSignal, // Did the user click [Start/Stop/Restart]?
start: Instant, // Start time of process
uptime: HumanTime, // Human readable process uptime
output: String, // This is the process's stdout + stderr
stdin: Option<std::process::ChildStdin>, // A handle to the process's STDIN
// STDIN Problem:
// - User can input many many commands in 1 second
// - The process loop only processes every 1 second
// - If there is only 1 [String] holding the user input,
// the user could overwrite their last input before
// the loop even has a chance to process their last command
// STDIN Solution:
// - When the user inputs something, push it to a [Vec]
// - In the process loop, loop over every [Vec] element and
// send each one individually to the process stdin
input: Vec<String>,
}
//---------------------------------------------------------------------------------------------------- [Process] Impl
impl Process {
pub fn new(name: ProcessName, args: String, path: PathBuf) -> Self {
let now = Instant::now();
Self {
name,
state: ProcessState::Dead,
signal: ProcessSignal::None,
start: now,
uptime: HumanTime::into_human(now.elapsed()),
stdin: Option::None,
// P2Pool log level 1 produces a bit less than 100,000 lines a day.
// Assuming each line averages 80 UTF-8 scalars (80 bytes), then this
// initial buffer should last around a week (56MB) before resetting.
output: String::with_capacity(56_000_000),
input: vec![String::new()],
}
}
// Borrow a [&str], return an owned split collection
pub fn parse_args(args: &str) -> Vec<String> {
args.split_whitespace().map(|s| s.to_owned()).collect()
}
}
//---------------------------------------------------------------------------------------------------- [Process*] Enum
#[derive(Copy,Clone,Eq,PartialEq,Debug)]
pub enum ProcessState {
Alive, // Process is online, GREEN!
Dead, // Process is dead, BLACK!
Failed, // Process is dead AND exited with a bad code, RED!
// Process is starting up, YELLOW!
// Really, processes start instantly, this just accounts for the delay
// between the main thread and this threads 1 second event loop.
Starting,
}
#[derive(Copy,Clone,Eq,PartialEq,Debug)]
pub enum ProcessSignal {
None,
Start,
Stop,
Restart,
}
#[derive(Copy,Clone,Eq,PartialEq,Debug)]
pub enum ProcessName {
P2pool,
Xmrig,
}
impl std::fmt::Display for ProcessState { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { write!(f, "{:#?}", self) } }
impl std::fmt::Display for ProcessSignal { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { write!(f, "{:#?}", self) } }
impl std::fmt::Display for ProcessName { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { write!(f, "{:#?}", self) } }
//---------------------------------------------------------------------------------------------------- [HumanTime]
// This converts a [std::time::Duration] into something more readable.
// Used for uptime display purposes: [7 years, 8 months, 15 days, 23 hours, 35 minutes, 1 second]
// Code taken from [https://docs.rs/humantime/] and edited to remove sub-second time, change spacing and some words.
use std::time::Duration;
#[derive(Debug, Clone)]
pub struct HumanTime(Duration);
impl HumanTime {
pub fn into_human(d: Duration) -> HumanTime {
HumanTime(d)
}
fn plural(f: &mut std::fmt::Formatter, started: &mut bool, name: &str, value: u64) -> std::fmt::Result {
if value > 0 {
if *started { f.write_str(" ")?; }
}
write!(f, "{}{}", value, name)?;
if value > 1 {
f.write_str("s")?;
}
*started = true;
Ok(())
}
}
impl std::fmt::Display for HumanTime {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let secs = self.0.as_secs();
if secs == 0 {
f.write_str("0s")?;
return Ok(());
}
let years = secs / 31_557_600; // 365.25d
let ydays = secs % 31_557_600;
let months = ydays / 2_630_016; // 30.44d
let mdays = ydays % 2_630_016;
let days = mdays / 86400;
let day_secs = mdays % 86400;
let hours = day_secs / 3600;
let minutes = day_secs % 3600 / 60;
let seconds = day_secs % 60;
let ref mut started = false;
Self::plural(f, started, " year", years)?;
Self::plural(f, started, " month", months)?;
Self::plural(f, started, " day", days)?;
Self::plural(f, started, " hour", hours)?;
Self::plural(f, started, " minute", minutes)?;
Self::plural(f, started, " second", seconds)?;
Ok(())
}
}
//---------------------------------------------------------------------------------------------------- [P2poolApi]
pub struct P2poolApi {
}
impl P2poolApi {
pub fn new() -> Self {
Self {
}
}
}
//---------------------------------------------------------------------------------------------------- [XmrigApi]
pub struct XmrigApi {
}
impl XmrigApi {
pub fn new() -> Self {
Self {
}
}
}
//---------------------------------------------------------------------------------------------------- [Helper]
impl Helper {
pub fn new(instant: std::time::Instant) -> Self {
Self {
instant,
human_time: HumanTime::into_human(instant.elapsed()),
p2pool: Process::new(ProcessName::P2pool, String::new(), PathBuf::new()),
xmrig: Process::new(ProcessName::Xmrig, String::new(), PathBuf::new()),
p2pool_api: P2poolApi::new(),
xmrig_api: XmrigApi::new(),
}
}
// Intermediate function that spawns the helper thread.
pub fn spawn_helper(helper: &Arc<Mutex<Self>>) {
let helper = Arc::clone(helper);
thread::spawn(move || { Self::helper(helper); });
}
// The tokio runtime that blocks while async reading both STDOUT/STDERR
// Cheaper than spawning 2 OS threads just to read 2 pipes (...right? :D)
#[tokio::main]
async fn read_stdout_stderr(stdout: tokio::process::ChildStdout, stderr: tokio::process::ChildStderr) {
// Create STDOUT pipe job
let stdout_job = tokio::spawn(async move {
let mut stdout_reader = BufReader::new(stdout).lines();
while let Ok(Some(line)) = stdout_reader.next_line().await {
println!("{}", line);
}
});
// Create STDERR pipe job
let stderr_job = tokio::spawn(async move {
let mut stderr_reader = BufReader::new(stderr).lines();
while let Ok(Some(line)) = stderr_reader.next_line().await {
println!("{}", line);
}
});
// Block and read both until they are closed (automatic when process dies)
tokio::join![stdout_job, stderr_job];
}
// The "helper" loop
// [helper] = Actual Arc
// [h] = Temporary lock that gets dropped
// [jobs] = Vector of async jobs ready to go
#[tokio::main]
pub async fn helper(helper: Arc<Mutex<Self>>) {
// Begin loop
loop {
// 1. Create "jobs" vector holding async tasks
let jobs: Vec<tokio::task::JoinHandle<Result<(), anyhow::Error>>> = vec![];
// 2. Loop init timestamp
let start = Instant::now();
// 3. Spawn child processes (if signal found)
let h = helper.lock().unwrap();
if let ProcessSignal::Start = h.p2pool.signal {
// Start outer thread, start inner stdout/stderr pipe, loop in outer thread for stdin/signal/etc
if !h.p2pool.input.is_empty() {
// Process STDIN
}
}
drop(h);
let h = helper.lock().unwrap();
if let ProcessSignal::Start = h.xmrig.signal {
// Start outer thread, start inner stdout/stderr pipe, loop in outer thread for stdin/signal/etc
if !h.xmrig.input.is_empty() {
// Process STDIN
}
}
drop(h);
// 4. Collect P2Pool API task (if alive)
let h = helper.lock().unwrap();
if let ProcessState::Alive = h.p2pool.state {
}
// 5. Collect XMRig HTTP API task (if alive)
if let ProcessState::Alive = h.xmrig.state {
}
drop(h);
// 6. Execute all async tasks
for job in jobs {
job.await;
}
// 7. Set Gupax/P2Pool/XMRig uptime
let mut h = helper.lock().unwrap();
h.human_time = HumanTime::into_human(h.instant.elapsed());
drop(h);
// 8. Calculate if we should sleep or not.
// If we should sleep, how long?
let elapsed = start.elapsed().as_millis();
if elapsed < 1000 {
// Casting from u128 to u64 should be safe here, because [elapsed]
// is less than 1000, meaning it can fit into a u64 easy.
std::thread::sleep(std::time::Duration::from_millis((1000-elapsed) as u64));
}
// 9. End loop
}
}
}