mirror of
https://github.com/feather-wallet/feather.git
synced 2024-11-16 17:27:38 +00:00
build: vendor bcur
This commit is contained in:
parent
dcbf24c5b0
commit
086379f34a
35 changed files with 3597 additions and 6 deletions
|
@ -98,9 +98,10 @@ find_package(QREncode REQUIRED)
|
|||
|
||||
# bc-ur
|
||||
if(WITH_SCANNER)
|
||||
find_path(BCUR_INCLUDE_DIR "bcur/bc-ur.hpp")
|
||||
find_library(BCUR_LIBRARY bcur)
|
||||
message(STATUS "bcur: libraries at ${BCUR_INCLUDE_DIR}")
|
||||
find_package(BCUR REQUIRED)
|
||||
if(BCUR_VENDORED)
|
||||
add_subdirectory(src/third-party/bcur EXCLUDE_FROM_ALL)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# Polyseed
|
||||
|
|
12
cmake/FindBCUR.cmake
Normal file
12
cmake/FindBCUR.cmake
Normal file
|
@ -0,0 +1,12 @@
|
|||
find_path(BCUR_INCLUDE_DIR "bcur/bc-ur.hpp")
|
||||
find_library(BCUR_LIBRARY bcur)
|
||||
|
||||
if (NOT BCUR_INCLUDE_DIR OR NOT BCUR_LIBRARY)
|
||||
MESSAGE(STATUS "Could not find installed BCUR, using vendored library instead")
|
||||
set(BCUR_VENDORED "ON")
|
||||
set(BCUR_INCLUDE_DIR ${CMAKE_SOURCE_DIR}/src/third-party)
|
||||
set(BCUR_LIBRARY bcur_static)
|
||||
endif()
|
||||
|
||||
message(STATUS "BCUR PATH ${BCUR_INCLUDE_DIR}")
|
||||
message(STATUS "BCUR LIBRARY ${BCUR_LIBRARY}")
|
|
@ -13,8 +13,6 @@
|
|||
|
||||
#include "QrScanThread.h"
|
||||
|
||||
#include <bcur/ur-decoder.hpp>
|
||||
|
||||
namespace Ui {
|
||||
class QrCodeScanDialog;
|
||||
}
|
||||
|
|
|
@ -9,7 +9,6 @@
|
|||
|
||||
#include "utils/config.h"
|
||||
#include "utils/Icons.h"
|
||||
#include <bcur/bc-ur.hpp>
|
||||
|
||||
QrCodeScanWidget::QrCodeScanWidget(QWidget *parent)
|
||||
: QWidget(parent)
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
|
||||
#include "QrScanThread.h"
|
||||
|
||||
#include <bcur/bc-ur.hpp>
|
||||
#include <bcur/ur-decoder.hpp>
|
||||
|
||||
namespace Ui {
|
||||
|
|
21
src/third-party/bcur/CMakeLists.txt
vendored
Normal file
21
src/third-party/bcur/CMakeLists.txt
vendored
Normal file
|
@ -0,0 +1,21 @@
|
|||
cmake_minimum_required(VERSION 3.5)
|
||||
|
||||
project(bcur)
|
||||
|
||||
set(bcur_sources
|
||||
bytewords.cpp
|
||||
fountain-encoder.cpp
|
||||
fountain-decoder.cpp
|
||||
fountain-utils.cpp
|
||||
xoshiro256.cpp
|
||||
utils.cpp
|
||||
random-sampler.cpp
|
||||
ur-decoder.cpp
|
||||
ur.cpp
|
||||
ur-encoder.cpp
|
||||
memzero.c
|
||||
crc32.c
|
||||
sha2.c)
|
||||
|
||||
add_library(bcur_static STATIC ${bcur_sources})
|
||||
set_property(TARGET bcur_static PROPERTY POSITION_INDEPENDENT_CODE ON)
|
2
src/third-party/bcur/README.md
vendored
Normal file
2
src/third-party/bcur/README.md
vendored
Normal file
|
@ -0,0 +1,2 @@
|
|||
vendored from https://github.com/BlockchainCommons/bc-ur
|
||||
2bfc3fd396498c2519273aeaa732abf7ea7d24b8
|
28
src/third-party/bcur/bc-ur.hpp
vendored
Normal file
28
src/third-party/bcur/bc-ur.hpp
vendored
Normal file
|
@ -0,0 +1,28 @@
|
|||
//
|
||||
// bc-ur.hpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#ifndef BC_UR_HPP
|
||||
#define BC_UR_HPP
|
||||
|
||||
#include "ur.hpp"
|
||||
#include "ur-encoder.hpp"
|
||||
#include "ur-decoder.hpp"
|
||||
#include "fountain-encoder.hpp"
|
||||
#include "fountain-decoder.hpp"
|
||||
#include "fountain-utils.hpp"
|
||||
#include "utils.hpp"
|
||||
#include "bytewords.hpp"
|
||||
#include "xoshiro256.hpp"
|
||||
#include "random-sampler.hpp"
|
||||
|
||||
namespace ur {
|
||||
|
||||
#include "cbor-lite.hpp"
|
||||
|
||||
}
|
||||
|
||||
#endif // BC_UR_HPP
|
169
src/third-party/bcur/bytewords.cpp
vendored
Normal file
169
src/third-party/bcur/bytewords.cpp
vendored
Normal file
|
@ -0,0 +1,169 @@
|
|||
//
|
||||
// bytewords.cpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#include "bytewords.hpp"
|
||||
#include "utils.hpp"
|
||||
#include <stdexcept>
|
||||
#include <algorithm>
|
||||
|
||||
namespace ur {
|
||||
|
||||
using namespace std;
|
||||
|
||||
static const char* bytewords = "ableacidalsoapexaquaarchatomauntawayaxisbackbaldbarnbeltbetabiasbluebodybragbrewbulbbuzzcalmcashcatschefcityclawcodecolacookcostcruxcurlcuspcyandarkdatadaysdelidicedietdoordowndrawdropdrumdulldutyeacheasyechoedgeepicevenexamexiteyesfactfairfernfigsfilmfishfizzflapflewfluxfoxyfreefrogfuelfundgalagamegeargemsgiftgirlglowgoodgraygrimgurugushgyrohalfhanghardhawkheathelphighhillholyhopehornhutsicedideaidleinchinkyintoirisironitemjadejazzjoinjoltjowljudojugsjumpjunkjurykeepkenokeptkeyskickkilnkingkitekiwiknoblamblavalazyleaflegsliarlimplionlistlogoloudloveluaulucklungmainmanymathmazememomenumeowmildmintmissmonknailnavyneednewsnextnoonnotenumbobeyoboeomitonyxopenovalowlspaidpartpeckplaypluspoempoolposepuffpumapurrquadquizraceramprealredorichroadrockroofrubyruinrunsrustsafesagascarsetssilkskewslotsoapsolosongstubsurfswantacotasktaxitenttiedtimetinytoiltombtoystriptunatwinuglyundouniturgeuservastveryvetovialvibeviewvisavoidvowswallwandwarmwaspwavewaxywebswhatwhenwhizwolfworkyankyawnyellyogayurtzapszerozestzinczonezoom";
|
||||
|
||||
uint8_t decode_word(const string& word, size_t word_len) {
|
||||
if(word.length() != word_len) {
|
||||
throw runtime_error("Invalid Bytewords.");
|
||||
}
|
||||
|
||||
static int16_t* array = NULL;
|
||||
const size_t dim = 26;
|
||||
|
||||
// Since the first and last letters of each Byteword are unique,
|
||||
// we can use them as indexes into a two-dimensional lookup table.
|
||||
// This table is generated lazily.
|
||||
if(array == NULL) {
|
||||
const size_t array_len = dim * dim;
|
||||
array = (int16_t*)malloc(array_len * sizeof(int16_t));
|
||||
for(size_t i = 0; i < array_len; i++) {
|
||||
array[i] = -1;
|
||||
}
|
||||
for(size_t i = 0; i < 256; i++) {
|
||||
const char* byteword = bytewords + i * 4;
|
||||
size_t x = byteword[0] - 'a';
|
||||
size_t y = byteword[3] - 'a';
|
||||
size_t offset = y * dim + x;
|
||||
array[offset] = i;
|
||||
}
|
||||
}
|
||||
|
||||
// If the coordinates generated by the first and last letters are out of bounds,
|
||||
// or the lookup table contains -1 at the coordinates, then the word is not valid.
|
||||
int x = tolower(word[0]) - 'a';
|
||||
int y = tolower(word[word_len == 4 ? 3 : 1]) - 'a';
|
||||
if(!(0 <= x && x < dim && 0 <= y && y < dim)) {
|
||||
throw runtime_error("Invalid Bytewords.");
|
||||
}
|
||||
size_t offset = y * dim + x;
|
||||
int16_t value = array[offset];
|
||||
if(value == -1) {
|
||||
throw runtime_error("Invalid Bytewords.");
|
||||
}
|
||||
|
||||
// If we're decoding a full four-letter word, verify that the two middle letters are correct.
|
||||
if(word_len == 4) {
|
||||
const char* byteword = bytewords + value * 4;
|
||||
int c1 = tolower(word[1]);
|
||||
int c2 = tolower(word[2]);
|
||||
if(c1 != byteword[1] || c2 != byteword[2]) {
|
||||
throw runtime_error("Invalid Bytewords.");
|
||||
}
|
||||
}
|
||||
|
||||
// Successful decode.
|
||||
return value;
|
||||
}
|
||||
|
||||
static const string get_word(uint8_t index) {
|
||||
auto p = &bytewords[index * 4];
|
||||
return string(p, p + 4);
|
||||
}
|
||||
|
||||
static const string get_minimal_word(uint8_t index) {
|
||||
string word;
|
||||
word.reserve(2);
|
||||
auto p = &bytewords[index * 4];
|
||||
word.push_back(*p);
|
||||
word.push_back(*(p + 3));
|
||||
return word;
|
||||
}
|
||||
|
||||
static const string encode(const ByteVector& buf, const string& separator) {
|
||||
auto len = buf.size();
|
||||
StringVector words;
|
||||
words.reserve(len);
|
||||
for(int i = 0; i < len; i++) {
|
||||
auto byte = buf[i];
|
||||
words.push_back(get_word(byte));
|
||||
}
|
||||
return join(words, separator);
|
||||
}
|
||||
|
||||
static const ByteVector add_crc(const ByteVector& buf) {
|
||||
auto crc_buf = crc32_bytes(buf);
|
||||
auto result = buf;
|
||||
append(result, crc_buf);
|
||||
return result;
|
||||
}
|
||||
|
||||
static const string encode_with_separator(const ByteVector& buf, const string& separator) {
|
||||
auto crc_buf = add_crc(buf);
|
||||
return encode(crc_buf, separator);
|
||||
}
|
||||
|
||||
static const string encode_minimal(const ByteVector& buf) {
|
||||
string result;
|
||||
auto crc_buf = add_crc(buf);
|
||||
auto len = crc_buf.size();
|
||||
for(int i = 0; i < len; i++) {
|
||||
auto byte = crc_buf[i];
|
||||
result.append(get_minimal_word(byte));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static const ByteVector _decode(const string& s, char separator, size_t word_len) {
|
||||
StringVector words;
|
||||
if(word_len == 4) {
|
||||
words = split(s, separator);
|
||||
} else {
|
||||
words = partition(s, 2);
|
||||
}
|
||||
ByteVector buf;
|
||||
transform(words.begin(), words.end(), back_inserter(buf), [&](auto word) { return decode_word(word, word_len); });
|
||||
if(buf.size() < 5) {
|
||||
throw runtime_error("Invalid Bytewords.");
|
||||
}
|
||||
auto p = split(buf, buf.size() - 4);
|
||||
auto body = p.first;
|
||||
auto body_checksum = p.second;
|
||||
auto checksum = crc32_bytes(body);
|
||||
if(checksum != body_checksum) {
|
||||
throw runtime_error("Invalid Bytewords.");
|
||||
}
|
||||
|
||||
return body;
|
||||
}
|
||||
|
||||
string Bytewords::encode(style style, const ByteVector& bytes) {
|
||||
switch(style) {
|
||||
case standard:
|
||||
return encode_with_separator(bytes, " ");
|
||||
case uri:
|
||||
return encode_with_separator(bytes, "-");
|
||||
case minimal:
|
||||
return encode_minimal(bytes);
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
ByteVector Bytewords::decode(style style, const string& string) {
|
||||
switch(style) {
|
||||
case standard:
|
||||
return _decode(string, ' ', 4);
|
||||
case uri:
|
||||
return _decode(string, '-', 4);
|
||||
case minimal:
|
||||
return _decode(string, 0, 2);
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
30
src/third-party/bcur/bytewords.hpp
vendored
Normal file
30
src/third-party/bcur/bytewords.hpp
vendored
Normal file
|
@ -0,0 +1,30 @@
|
|||
//
|
||||
// bytewords.hpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#ifndef BC_UR_BYTEWORDS_HPP
|
||||
#define BC_UR_BYTEWORDS_HPP
|
||||
|
||||
#include <string>
|
||||
#include "utils.hpp"
|
||||
|
||||
namespace ur {
|
||||
|
||||
class Bytewords final {
|
||||
public:
|
||||
enum style {
|
||||
standard,
|
||||
uri,
|
||||
minimal
|
||||
};
|
||||
|
||||
static std::string encode(style style, const ByteVector& bytes);
|
||||
static ByteVector decode(style style, const std::string& string);
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // BC_UR_BYTEWORDS_HPP
|
558
src/third-party/bcur/cbor-lite.hpp
vendored
Normal file
558
src/third-party/bcur/cbor-lite.hpp
vendored
Normal file
|
@ -0,0 +1,558 @@
|
|||
#ifndef BC_UR_CBOR_LITE_HPP
|
||||
#define BC_UR_CBOR_LITE_HPP
|
||||
|
||||
// From: https://bitbucket.org/isode/cbor-lite/raw/6c770624a97e3229e3f200be092c1b9c70a60ef1/include/cbor-lite/codec.h
|
||||
|
||||
// This file is part of CBOR-lite which is copyright Isode Limited
|
||||
// and others and released under a MIT license. For details, see the
|
||||
// COPYRIGHT.md file in the top-level folder of the CBOR-lite software
|
||||
// distribution.
|
||||
|
||||
#include <exception>
|
||||
#include <iterator>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <cstdint>
|
||||
|
||||
#ifndef __BYTE_ORDER__
|
||||
#error __BYTE_ORDER__ not defined
|
||||
#elif (__BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__) && (__BYTE_ORDER__ != __ORDER_BIG_ENDIAN__)
|
||||
#error __BYTE_ORDER__ neither __ORDER_BIG_ENDIAN__ nor __ORDER_LITTLE_ENDIAN__
|
||||
#endif
|
||||
|
||||
namespace CborLite {
|
||||
|
||||
class Exception : public std::exception {
|
||||
public:
|
||||
Exception() noexcept {
|
||||
}
|
||||
virtual ~Exception() noexcept = default;
|
||||
|
||||
explicit Exception(const char* d) noexcept {
|
||||
what_ += std::string(": ") + d;
|
||||
}
|
||||
|
||||
explicit Exception(const std::string& d) noexcept {
|
||||
what_ += ": " + d;
|
||||
}
|
||||
|
||||
Exception(const Exception& e) noexcept : what_(e.what_) {
|
||||
}
|
||||
|
||||
Exception(Exception&& e) noexcept : what_(std::move(e.what_)) {
|
||||
// Note that e.what_ is not re-initialized to "CBOR Exception" as
|
||||
// the moved-from object is not expected to ever be reused.
|
||||
}
|
||||
|
||||
Exception& operator=(const Exception&) = delete;
|
||||
Exception& operator=(Exception&&) = delete;
|
||||
|
||||
virtual const char* what() const noexcept {
|
||||
return what_.c_str();
|
||||
}
|
||||
|
||||
private:
|
||||
std::string what_ = "CBOR Exception";
|
||||
};
|
||||
|
||||
using Tag = std::uint_fast64_t;
|
||||
|
||||
namespace Major {
|
||||
constexpr Tag unsignedInteger = 0u;
|
||||
constexpr Tag negativeInteger = 1u << 5;
|
||||
constexpr Tag byteString = 2u << 5;
|
||||
constexpr Tag textString = 3u << 5;
|
||||
constexpr Tag array = 4u << 5;
|
||||
constexpr Tag map = 5u << 5;
|
||||
constexpr Tag semantic = 6u << 5;
|
||||
constexpr Tag floatingPoint = 7u << 5;
|
||||
constexpr Tag simple = 7u << 5;
|
||||
constexpr Tag mask = 0xe0u;
|
||||
} // namespace Major
|
||||
|
||||
namespace Minor {
|
||||
constexpr Tag length1 = 24u;
|
||||
constexpr Tag length2 = 25u;
|
||||
constexpr Tag length4 = 26u;
|
||||
constexpr Tag length8 = 27u;
|
||||
|
||||
constexpr Tag False = 20u;
|
||||
constexpr Tag True = 21u;
|
||||
constexpr Tag null = 22u;
|
||||
constexpr Tag undefined = 23u;
|
||||
constexpr Tag halfFloat = 25u; // not implemented
|
||||
constexpr Tag singleFloat = 26u;
|
||||
constexpr Tag doubleFloat = 27u;
|
||||
|
||||
constexpr Tag dataTime = 0u;
|
||||
constexpr Tag epochDataTime = 1u;
|
||||
constexpr Tag positiveBignum = 2u;
|
||||
constexpr Tag negativeBignum = 3u;
|
||||
constexpr Tag decimalFraction = 4u;
|
||||
constexpr Tag bigfloat = 5u;
|
||||
constexpr Tag convertBase64Url = 21u;
|
||||
constexpr Tag convertBase64 = 22u;
|
||||
constexpr Tag convertBase16 = 23u;
|
||||
constexpr Tag cborEncodedData = 24u;
|
||||
constexpr Tag uri = 32u;
|
||||
constexpr Tag base64Url = 33u;
|
||||
constexpr Tag base64 = 34u;
|
||||
constexpr Tag regex = 35u;
|
||||
constexpr Tag mimeMessage = 36u;
|
||||
constexpr Tag selfDescribeCbor = 55799u;
|
||||
|
||||
constexpr Tag mask = 0x1fu;
|
||||
} // namespace Minor
|
||||
|
||||
constexpr Tag undefined = Major::semantic + Minor::undefined;
|
||||
|
||||
using Flags = unsigned;
|
||||
namespace Flag {
|
||||
constexpr Flags none = 0;
|
||||
constexpr Flags requireMinimalEncoding = 1 << 0;
|
||||
} // namespace Flag
|
||||
|
||||
template <typename Type>
|
||||
typename std::enable_if<std::is_unsigned<Type>::value, std::size_t>::type length(Type val) {
|
||||
if (val < 24) return 0;
|
||||
for (std::size_t i = 1; i <= ((sizeof val) >> 1); i <<= 1) {
|
||||
if (!(val >> (i << 3))) return i;
|
||||
}
|
||||
return sizeof val;
|
||||
}
|
||||
|
||||
template <typename Buffer>
|
||||
typename std::enable_if<std::is_class<Buffer>::value, std::size_t>::type encodeTagAndAdditional(
|
||||
Buffer& buffer, Tag tag, Tag additional) {
|
||||
buffer.push_back(static_cast<char>(tag + additional));
|
||||
return 1;
|
||||
}
|
||||
|
||||
template <typename InputIterator>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value, std::size_t>::type decodeTagAndAdditional(
|
||||
InputIterator& pos, InputIterator end, Tag& tag, Tag& additional, Flags = Flag::none) {
|
||||
if (pos == end) throw Exception("not enough input");
|
||||
auto octet = *(pos++);
|
||||
tag = octet & Major::mask;
|
||||
additional = octet & Minor::mask;
|
||||
return 1;
|
||||
}
|
||||
|
||||
template <typename Buffer, typename Type>
|
||||
typename std::enable_if<std::is_class<Buffer>::value && std::is_unsigned<Type>::value, std::size_t>::type encodeTagAndValue(
|
||||
Buffer& buffer, Tag tag, const Type t) {
|
||||
auto len = length(t);
|
||||
buffer.reserve(buffer.size() + len + 1);
|
||||
|
||||
switch (len) {
|
||||
case 8:
|
||||
encodeTagAndAdditional(buffer, tag, Minor::length8);
|
||||
break;
|
||||
case 4:
|
||||
encodeTagAndAdditional(buffer, tag, Minor::length4);
|
||||
break;
|
||||
case 2:
|
||||
encodeTagAndAdditional(buffer, tag, Minor::length2);
|
||||
break;
|
||||
case 1:
|
||||
encodeTagAndAdditional(buffer, tag, Minor::length1);
|
||||
break;
|
||||
case 0:
|
||||
return encodeTagAndAdditional(buffer, tag, t);
|
||||
default:
|
||||
throw Exception("too long");
|
||||
}
|
||||
|
||||
switch (len) {
|
||||
case 8:
|
||||
buffer.push_back((t >> 56) & 0xffU);
|
||||
buffer.push_back((t >> 48) & 0xffU);
|
||||
buffer.push_back((t >> 40) & 0xffU);
|
||||
buffer.push_back((t >> 32) & 0xffU);
|
||||
case 4:
|
||||
buffer.push_back((t >> 24) & 0xffU);
|
||||
buffer.push_back((t >> 16) & 0xffU);
|
||||
case 2:
|
||||
buffer.push_back((t >> 8) & 0xffU);
|
||||
case 1:
|
||||
buffer.push_back(t & 0xffU);
|
||||
}
|
||||
|
||||
return 1 + len;
|
||||
}
|
||||
|
||||
template <typename InputIterator, typename Type>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value && std::is_unsigned<Type>::value, std::size_t>::type decodeTagAndValue(
|
||||
InputIterator& pos, InputIterator end, Tag& tag, Type& t, Flags flags = Flag::none) {
|
||||
if (pos == end) throw Exception("not enough input");
|
||||
auto additional = Minor::undefined;
|
||||
auto len = decodeTagAndAdditional(pos, end, tag, additional, flags);
|
||||
if (additional < Minor::length1) {
|
||||
t = additional;
|
||||
return len;
|
||||
}
|
||||
t = 0u;
|
||||
switch (additional) {
|
||||
case Minor::length8:
|
||||
if (std::distance(pos, end) < 8) throw Exception("not enough input");
|
||||
t |= static_cast<Type>(reinterpret_cast<const unsigned char&>(*(pos++))) << 56;
|
||||
t |= static_cast<Type>(reinterpret_cast<const unsigned char&>(*(pos++))) << 48;
|
||||
t |= static_cast<Type>(reinterpret_cast<const unsigned char&>(*(pos++))) << 40;
|
||||
t |= static_cast<Type>(reinterpret_cast<const unsigned char&>(*(pos++))) << 32;
|
||||
len += 4;
|
||||
if ((flags & Flag::requireMinimalEncoding) && !t) throw Exception("encoding not minimal");
|
||||
case Minor::length4:
|
||||
if (std::distance(pos, end) < 4) throw Exception("not enough input");
|
||||
t |= static_cast<Type>(reinterpret_cast<const unsigned char&>(*(pos++))) << 24;
|
||||
t |= static_cast<Type>(reinterpret_cast<const unsigned char&>(*(pos++))) << 16;
|
||||
len += 2;
|
||||
if ((flags & Flag::requireMinimalEncoding) && !t) throw Exception("encoding not minimal");
|
||||
case Minor::length2:
|
||||
if (std::distance(pos, end) < 2) throw Exception("not enough input");
|
||||
t |= static_cast<Type>(reinterpret_cast<const unsigned char&>(*(pos++))) << 8;
|
||||
len++;
|
||||
if ((flags & Flag::requireMinimalEncoding) && !t) throw Exception("encoding not minimal");
|
||||
case Minor::length1:
|
||||
if (std::distance(pos, end) < 1) throw Exception("not enough input");
|
||||
t |= static_cast<Type>(reinterpret_cast<const unsigned char&>(*(pos++)));
|
||||
len++;
|
||||
if ((flags & Flag::requireMinimalEncoding) && t < 24) throw Exception("encoding not minimal");
|
||||
return len;
|
||||
}
|
||||
throw Exception("bad additional value");
|
||||
}
|
||||
|
||||
template <typename Buffer, typename Type>
|
||||
typename std::enable_if<std::is_class<Buffer>::value, std::size_t>::type encodeUnsigned(Buffer& buffer, const Type& t) {
|
||||
return encodeTagAndValue(buffer, Major::unsignedInteger, t);
|
||||
}
|
||||
|
||||
template <typename InputIterator, typename Type>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value && std::is_unsigned<Type>::value && !std::is_const<Type>::value,
|
||||
std::size_t>::type
|
||||
decodeUnsigned(InputIterator& pos, InputIterator end, Type& t, Flags flags = Flag::none) {
|
||||
auto tag = undefined;
|
||||
auto len = decodeTagAndValue(pos, end, tag, t, flags);
|
||||
if (tag != Major::unsignedInteger) throw Exception("not Unsigned");
|
||||
return len;
|
||||
}
|
||||
|
||||
template <typename Buffer, typename Type>
|
||||
typename std::enable_if<std::is_class<Buffer>::value, std::size_t>::type encodeNegative(Buffer& buffer, const Type& t) {
|
||||
return encodeTagAndValue(buffer, Major::negativeInteger, t);
|
||||
}
|
||||
|
||||
template <typename InputIterator, typename Type>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value && std::is_unsigned<Type>::value && !std::is_const<Type>::value,
|
||||
std::size_t>::type
|
||||
decodeNegative(InputIterator& pos, InputIterator end, Type& t, Flags flags = Flag::none) {
|
||||
auto tag = undefined;
|
||||
auto len = decodeTagAndValue(pos, end, tag, t, flags);
|
||||
if (tag != Major::negativeInteger) throw Exception("not Unsigned");
|
||||
return len;
|
||||
}
|
||||
|
||||
template <typename Buffer, typename Type>
|
||||
typename std::enable_if<std::is_class<Buffer>::value, std::size_t>::type encodeInteger(Buffer& buffer, const Type& t) {
|
||||
if (t >= 0) {
|
||||
unsigned long long val = t;
|
||||
return encodeUnsigned(buffer, val);
|
||||
} else {
|
||||
unsigned long long val = -t - 1;
|
||||
return encodeNegative(buffer, val);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename InputIterator, typename Type>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value && std::is_signed<Type>::value && !std::is_const<Type>::value,
|
||||
std::size_t>::type
|
||||
decodeInteger(InputIterator& pos, InputIterator end, Type& t, Flags flags = Flag::none) {
|
||||
auto tag = undefined;
|
||||
unsigned long long val;
|
||||
auto len = decodeTagAndValue(pos, end, tag, val, flags);
|
||||
switch (tag) {
|
||||
case Major::unsignedInteger:
|
||||
t = val;
|
||||
break;
|
||||
case Major::negativeInteger:
|
||||
t = -1 - static_cast<long long>(val);
|
||||
break;
|
||||
default:
|
||||
throw Exception("not integer");
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
template <typename Buffer, typename Type>
|
||||
typename std::enable_if<std::is_class<Buffer>::value && std::is_same<bool, Type>::value, std::size_t>::type encodeBool(
|
||||
Buffer& buffer, const Type& t) {
|
||||
return encodeTagAndAdditional(buffer, Major::simple, t ? Minor::True : Minor::False);
|
||||
}
|
||||
|
||||
template <typename InputIterator, typename Type>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value && std::is_same<bool, Type>::value && !std::is_const<Type>::value,
|
||||
std::size_t>::type
|
||||
decodeBool(InputIterator& pos, InputIterator end, Type& t, Flags flags = Flag::none) {
|
||||
auto tag = undefined;
|
||||
auto value = undefined;
|
||||
auto len = decodeTagAndValue(pos, end, tag, value, flags);
|
||||
if (tag == Major::simple) {
|
||||
if (value == Minor::True) {
|
||||
t = true;
|
||||
return len;
|
||||
} else if (value == Minor::False) {
|
||||
t = false;
|
||||
return len;
|
||||
}
|
||||
throw Exception("not Boolean");
|
||||
}
|
||||
throw Exception("not Simple");
|
||||
}
|
||||
|
||||
template <typename Buffer, typename Type>
|
||||
typename std::enable_if<std::is_class<Buffer>::value, std::size_t>::type encodeBytes(Buffer& buffer, const Type& t) {
|
||||
auto len = encodeTagAndValue(buffer, Major::byteString, t.size());
|
||||
buffer.insert(std::end(buffer), std::begin(t), std::end(t));
|
||||
return len + t.size();
|
||||
}
|
||||
|
||||
template <typename InputIterator, typename Type>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value && !std::is_const<Type>::value, std::size_t>::type decodeBytes(
|
||||
InputIterator& pos, InputIterator end, Type& t, Flags flags = Flag::none) {
|
||||
auto tag = undefined;
|
||||
auto value = undefined;
|
||||
auto len = decodeTagAndValue(pos, end, tag, value, flags);
|
||||
if (tag != Major::byteString) throw Exception("not ByteString");
|
||||
|
||||
auto dist = std::distance(pos, end);
|
||||
if (dist < static_cast<decltype(dist)>(value)) throw Exception("not enough input");
|
||||
t.insert(std::end(t), pos, pos + value);
|
||||
std::advance(pos, value);
|
||||
return len + value;
|
||||
}
|
||||
|
||||
template <typename Buffer, typename Type>
|
||||
typename std::enable_if<std::is_class<Buffer>::value && std::is_unsigned<Type>::value, std::size_t>::type encodeEncodedBytesPrefix(
|
||||
Buffer& buffer, const Type& t) {
|
||||
auto len = encodeTagAndValue(buffer, Major::semantic, Minor::cborEncodedData);
|
||||
return len + encodeTagAndValue(buffer, Major::byteString, t);
|
||||
}
|
||||
|
||||
template <typename InputIterator, typename Type>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value && !std::is_const<Type>::value, std::size_t>::type
|
||||
decodeEncodedBytesPrefix(InputIterator& pos, InputIterator end, Type& t, Flags flags = Flag::none) {
|
||||
auto tag = undefined;
|
||||
auto value = undefined;
|
||||
auto len = decodeTagAndValue(pos, end, tag, value, flags);
|
||||
if (tag != Major::semantic || value != Minor::cborEncodedData) {
|
||||
throw Exception("not CBOR Encoded Data");
|
||||
}
|
||||
tag = undefined;
|
||||
len += decodeTagAndValue(pos, end, tag, value, flags);
|
||||
if (tag != Major::byteString) throw Exception("not ByteString");
|
||||
t = value;
|
||||
return len;
|
||||
}
|
||||
|
||||
template <typename Buffer, typename Type>
|
||||
typename std::enable_if<std::is_class<Buffer>::value, std::size_t>::type encodeEncodedBytes(Buffer& buffer, const Type& t) {
|
||||
auto len = encodeTagAndValue(buffer, Major::semantic, Minor::cborEncodedData);
|
||||
return len + encodeBytes(buffer, t);
|
||||
}
|
||||
|
||||
template <typename InputIterator, typename Type>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value && !std::is_const<Type>::value, std::size_t>::type decodeEncodedBytes(
|
||||
InputIterator& pos, InputIterator end, Type& t, Flags flags = Flag::none) {
|
||||
auto tag = undefined;
|
||||
auto value = undefined;
|
||||
auto len = decodeTagAndValue(pos, end, tag, value, flags);
|
||||
if (tag != Major::semantic || value != Minor::cborEncodedData) {
|
||||
throw Exception("not CBOR Encoded Data");
|
||||
}
|
||||
return len + decodeBytes(pos, end, t, flags);
|
||||
}
|
||||
|
||||
template <typename Buffer, typename Type>
|
||||
typename std::enable_if<std::is_class<Buffer>::value, std::size_t>::type encodeText(Buffer& buffer, const Type& t) {
|
||||
auto len = encodeTagAndValue(buffer, Major::textString, t.size());
|
||||
buffer.insert(std::end(buffer), std::begin(t), std::end(t));
|
||||
return len + t.size();
|
||||
}
|
||||
|
||||
template <typename InputIterator, typename Type>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value && !std::is_const<Type>::value, std::size_t>::type decodeText(
|
||||
InputIterator& pos, InputIterator end, Type& t, Flags flags = Flag::none) {
|
||||
auto tag = undefined;
|
||||
auto value = undefined;
|
||||
auto len = decodeTagAndValue(pos, end, tag, value, flags);
|
||||
if (tag != Major::textString) throw Exception("not TextString");
|
||||
|
||||
auto dist = std::distance(pos, end);
|
||||
if (dist < static_cast<decltype(dist)>(value)) throw Exception("not enough input");
|
||||
t.insert(std::end(t), pos, pos + value);
|
||||
std::advance(pos, value);
|
||||
return len + value;
|
||||
}
|
||||
|
||||
template <typename Buffer, typename Type>
|
||||
typename std::enable_if<std::is_class<Buffer>::value && std::is_unsigned<Type>::value, std::size_t>::type encodeArraySize(
|
||||
Buffer& buffer, const Type& t) {
|
||||
return encodeTagAndValue(buffer, Major::array, t);
|
||||
}
|
||||
|
||||
template <typename InputIterator, typename Type>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value && !std::is_const<Type>::value && std::is_unsigned<Type>::value,
|
||||
std::size_t>::type
|
||||
decodeArraySize(InputIterator& pos, InputIterator end, Type& t, Flags flags = Flag::none) {
|
||||
auto tag = undefined;
|
||||
auto value = undefined;
|
||||
auto len = decodeTagAndValue(pos, end, tag, value, flags);
|
||||
if (tag != Major::array) throw Exception("not Array");
|
||||
t = value;
|
||||
return len;
|
||||
}
|
||||
|
||||
template <typename Buffer, typename Type>
|
||||
typename std::enable_if<std::is_class<Buffer>::value && std::is_unsigned<Type>::value, std::size_t>::type encodeMapSize(
|
||||
Buffer& buffer, const Type& t) {
|
||||
return encodeTagAndValue(buffer, Major::map, t);
|
||||
}
|
||||
|
||||
template <typename InputIterator, typename Type>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value && !std::is_const<Type>::value && std::is_unsigned<Type>::value,
|
||||
std::size_t>::type
|
||||
decodeMapSize(InputIterator& pos, InputIterator end, Type& t, Flags flags = Flag::none) {
|
||||
auto tag = undefined;
|
||||
auto value = undefined;
|
||||
auto len = decodeTagAndValue(pos, end, tag, value, flags);
|
||||
if (tag != Major::map) throw Exception("not Map");
|
||||
t = value;
|
||||
return len;
|
||||
}
|
||||
|
||||
//
|
||||
// codec-fp.h
|
||||
//
|
||||
|
||||
template <typename Buffer, typename Type>
|
||||
typename std::enable_if<std::is_class<Buffer>::value && std::is_floating_point<Type>::value, std::size_t>::type encodeSingleFloat(
|
||||
Buffer& buffer, const Type& t) {
|
||||
static_assert(sizeof(float) == 4, "sizeof(float) expected to be 4");
|
||||
auto len = encodeTagAndAdditional(buffer, Major::floatingPoint, Minor::singleFloat);
|
||||
const char* p;
|
||||
float ft;
|
||||
if (sizeof(t) == sizeof(ft)) {
|
||||
p = reinterpret_cast<const char*>(&t);
|
||||
} else {
|
||||
ft = static_cast<decltype(ft)>(t);
|
||||
p = reinterpret_cast<char*>(&ft);
|
||||
}
|
||||
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
||||
for (auto i = 0u; i < sizeof(ft); ++i) {
|
||||
buffer.push_back(p[i]);
|
||||
}
|
||||
#else
|
||||
for (auto i = 1u; i <= sizeof(ft); ++i) {
|
||||
buffer.push_back(p[sizeof(ft) - i]);
|
||||
}
|
||||
#endif
|
||||
return len + sizeof(ft);
|
||||
}
|
||||
|
||||
template <typename Buffer, typename Type>
|
||||
typename std::enable_if<std::is_class<Buffer>::value && std::is_floating_point<Type>::value, std::size_t>::type encodeDoubleFloat(
|
||||
Buffer& buffer, const Type& t) {
|
||||
static_assert(sizeof(double) == 8, "sizeof(double) expected to be 8");
|
||||
auto len = encodeTagAndAdditional(buffer, Major::floatingPoint, Minor::doubleFloat);
|
||||
const char* p;
|
||||
double ft;
|
||||
if (sizeof(t) == sizeof(ft)) {
|
||||
p = reinterpret_cast<const char*>(&t);
|
||||
} else {
|
||||
ft = t;
|
||||
p = reinterpret_cast<char*>(&ft);
|
||||
}
|
||||
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
||||
for (auto i = 0u; i < sizeof(ft); ++i) {
|
||||
buffer.push_back(p[i]);
|
||||
}
|
||||
#else
|
||||
for (auto i = 1u; i <= sizeof(ft); ++i) {
|
||||
buffer.push_back(p[sizeof(ft) - i]);
|
||||
}
|
||||
#endif
|
||||
return len + sizeof(ft);
|
||||
}
|
||||
|
||||
template <typename InputIterator, typename Type>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value && std::is_floating_point<Type>::value && !std::is_const<Type>::value,
|
||||
std::size_t>::type
|
||||
decodeSingleFloat(InputIterator& pos, InputIterator end, Type& t, Flags flags = Flag::none) {
|
||||
static_assert(sizeof(float) == 4, "sizeof(float) expected to be 4");
|
||||
auto tag = undefined;
|
||||
auto value = undefined;
|
||||
auto len = decodeTagAndAdditional(pos, end, tag, value, flags);
|
||||
if (tag != Major::floatingPoint) throw Exception("not floating-point");
|
||||
if (value != Minor::singleFloat) throw Exception("not single-precision floating-point");
|
||||
if (std::distance(pos, end) < static_cast<int>(sizeof(float))) throw Exception("not enough input");
|
||||
|
||||
char* p;
|
||||
float ft;
|
||||
if (sizeof(t) == sizeof(ft)) {
|
||||
p = reinterpret_cast<char*>(&t);
|
||||
} else {
|
||||
ft = static_cast<decltype(ft)>(t);
|
||||
p = reinterpret_cast<char*>(&ft);
|
||||
}
|
||||
|
||||
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
||||
for (auto i = 0u; i < sizeof(ft); ++i) {
|
||||
p[i] = *(pos++);
|
||||
}
|
||||
#else
|
||||
for (auto i = 1u; i <= sizeof(ft); ++i) {
|
||||
p[sizeof(ft) - i] = *(pos++);
|
||||
}
|
||||
#endif
|
||||
if (sizeof(t) != sizeof(ft)) t = ft;
|
||||
return len + sizeof(ft);
|
||||
}
|
||||
|
||||
template <typename InputIterator, typename Type>
|
||||
typename std::enable_if<std::is_class<InputIterator>::value && std::is_floating_point<Type>::value && !std::is_const<Type>::value,
|
||||
std::size_t>::type
|
||||
decodeDoubleFloat(InputIterator& pos, InputIterator end, Type& t, Flags flags = Flag::none) {
|
||||
static_assert(sizeof(double) == 8, "sizeof(double) expected to be 8");
|
||||
auto tag = undefined;
|
||||
auto value = undefined;
|
||||
auto len = decodeTagAndAdditional(pos, end, tag, value, flags);
|
||||
if (tag != Major::floatingPoint) throw Exception("not floating-point");
|
||||
if (value != Minor::doubleFloat) throw Exception("not double-precision floating-point");
|
||||
if (std::distance(pos, end) < static_cast<int>(sizeof(double))) throw Exception("not enough input");
|
||||
|
||||
char* p;
|
||||
double ft;
|
||||
if (sizeof(t) == sizeof(ft)) {
|
||||
p = reinterpret_cast<char*>(&t);
|
||||
} else {
|
||||
ft = t;
|
||||
p = reinterpret_cast<char*>(&ft);
|
||||
}
|
||||
|
||||
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
||||
for (auto i = 0u; i < sizeof(ft); ++i) {
|
||||
p[i] = *(pos++);
|
||||
}
|
||||
#else
|
||||
for (auto i = 1u; i <= sizeof(ft); ++i) {
|
||||
p[sizeof(ft) - i] = *(pos++);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (sizeof(t) != sizeof(ft)) t = ft;
|
||||
return len + sizeof(ft);
|
||||
}
|
||||
|
||||
} // namespace CborLite
|
||||
|
||||
#endif // BC_UR_CBOR_LITE_HPP
|
43
src/third-party/bcur/crc32.c
vendored
Normal file
43
src/third-party/bcur/crc32.c
vendored
Normal file
|
@ -0,0 +1,43 @@
|
|||
//
|
||||
// crc32.c
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#include "crc32.h"
|
||||
#include <memory.h>
|
||||
|
||||
#ifdef ARDUINO
|
||||
#define htonl(x) __builtin_bswap32((uint32_t) (x))
|
||||
#elif _WIN32
|
||||
#include <winsock2.h>
|
||||
#else
|
||||
#include <arpa/inet.h>
|
||||
#endif
|
||||
|
||||
uint32_t ur_crc32(const uint8_t* bytes, size_t len) {
|
||||
static uint32_t* table = NULL;
|
||||
|
||||
if(table == NULL) {
|
||||
table = malloc(256 * sizeof(uint32_t));
|
||||
for(int i = 0; i < 256; i++) {
|
||||
uint32_t c = i;
|
||||
for(int j = 0; j < 8; j++) {
|
||||
c = (c % 2 == 0) ? (c >> 1) : (0xEDB88320 ^ (c >> 1));
|
||||
}
|
||||
table[i] = c;
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t crc = ~0;
|
||||
for(int i = 0; i < len; i++) {
|
||||
uint32_t byte = bytes[i];
|
||||
crc = (crc >> 8) ^ table[(crc ^ byte) & 0xFF];
|
||||
}
|
||||
return ~crc;
|
||||
}
|
||||
|
||||
uint32_t ur_crc32n(const uint8_t* bytes, size_t len) {
|
||||
return htonl(ur_crc32(bytes, len));
|
||||
}
|
28
src/third-party/bcur/crc32.h
vendored
Normal file
28
src/third-party/bcur/crc32.h
vendored
Normal file
|
@ -0,0 +1,28 @@
|
|||
//
|
||||
// crc32.h
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#ifndef BC_UR_CRC32_H
|
||||
#define BC_UR_CRC32_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Returns the CRC-32 checksum of the input buffer.
|
||||
uint32_t ur_crc32(const uint8_t* bytes, size_t len);
|
||||
|
||||
// Returns the CRC-32 checksum of the input buffer in network byte order (big endian).
|
||||
uint32_t ur_crc32n(const uint8_t* bytes, size_t len);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // BC_UR_CRC32_H
|
253
src/third-party/bcur/fountain-decoder.cpp
vendored
Normal file
253
src/third-party/bcur/fountain-decoder.cpp
vendored
Normal file
|
@ -0,0 +1,253 @@
|
|||
//
|
||||
// fountain-decoder.cpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#include "fountain-decoder.hpp"
|
||||
#include <utility>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <cmath>
|
||||
#include <numeric>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace ur {
|
||||
|
||||
FountainDecoder::FountainDecoder() { }
|
||||
|
||||
FountainDecoder::Part::Part(const FountainEncoder::Part& p)
|
||||
: indexes_(choose_fragments(p.seq_num(), p.seq_len(), p.checksum()))
|
||||
, data_(p.data())
|
||||
{
|
||||
}
|
||||
|
||||
FountainDecoder::Part::Part(PartIndexes& indexes, ByteVector& data)
|
||||
: indexes_(indexes)
|
||||
, data_(data)
|
||||
{
|
||||
}
|
||||
|
||||
const ByteVector FountainDecoder::join_fragments(const vector<ByteVector>& fragments, size_t message_len) {
|
||||
auto message = join(fragments);
|
||||
return take_first(message, message_len);
|
||||
}
|
||||
|
||||
double FountainDecoder::estimated_percent_complete() const {
|
||||
if(is_complete()) return 1;
|
||||
if(!_expected_part_indexes.has_value()) return 0;
|
||||
auto estimated_input_parts = expected_part_count() * 1.75;
|
||||
return min(0.99, processed_parts_count_ / estimated_input_parts);
|
||||
}
|
||||
|
||||
bool FountainDecoder::receive_part(FountainEncoder::Part& encoder_part) {
|
||||
// Don't process the part if we're already done
|
||||
if(is_complete()) return false;
|
||||
|
||||
// Don't continue if this part doesn't validate
|
||||
if(!validate_part(encoder_part)) return false;
|
||||
|
||||
// Add this part to the queue
|
||||
auto p = Part(encoder_part);
|
||||
last_part_indexes_ = p.indexes();
|
||||
enqueue(p);
|
||||
|
||||
// Process the queue until we're done or the queue is empty
|
||||
while(!is_complete() && !_queued_parts.empty()) {
|
||||
process_queue_item();
|
||||
}
|
||||
|
||||
// Keep track of how many parts we've processed
|
||||
processed_parts_count_ += 1;
|
||||
|
||||
//print_part_end();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void FountainDecoder::enqueue(Part &&p) {
|
||||
_queued_parts.push_back(p);
|
||||
}
|
||||
|
||||
void FountainDecoder::enqueue(const Part &p) {
|
||||
_queued_parts.push_back(p);
|
||||
}
|
||||
|
||||
void FountainDecoder::process_queue_item() {
|
||||
auto part = _queued_parts.front();
|
||||
//print_part(part);
|
||||
_queued_parts.pop_front();
|
||||
if(part.is_simple()) {
|
||||
process_simple_part(part);
|
||||
} else {
|
||||
process_mixed_part(part);
|
||||
}
|
||||
//print_state();
|
||||
}
|
||||
|
||||
void FountainDecoder::reduce_mixed_by(const Part& p) {
|
||||
// Reduce all the current mixed parts by the given part
|
||||
vector<Part> reduced_parts;
|
||||
for(auto i = _mixed_parts.begin(); i != _mixed_parts.end(); i++) {
|
||||
reduced_parts.push_back(reduce_part_by_part(i->second, p));
|
||||
}
|
||||
|
||||
// Collect all the remaining mixed parts
|
||||
PartDict new_mixed;
|
||||
for(auto reduced_part: reduced_parts) {
|
||||
// If this reduced part is now simple
|
||||
if(reduced_part.is_simple()) {
|
||||
// Add it to the queue
|
||||
enqueue(reduced_part);
|
||||
} else {
|
||||
// Otherwise, add it to the list of current mixed parts
|
||||
new_mixed.insert(pair(reduced_part.indexes(), reduced_part));
|
||||
}
|
||||
}
|
||||
_mixed_parts = new_mixed;
|
||||
}
|
||||
|
||||
FountainDecoder::Part FountainDecoder::reduce_part_by_part(const Part& a, const Part& b) const {
|
||||
// If the fragments mixed into `b` are a strict (proper) subset of those in `a`...
|
||||
if(is_strict_subset(b.indexes(), a.indexes())) {
|
||||
// The new fragments in the revised part are `a` - `b`.
|
||||
auto new_indexes = set_difference(a.indexes(), b.indexes());
|
||||
// The new data in the revised part are `a` XOR `b`
|
||||
auto new_data = xor_with(a.data(), b.data());
|
||||
return Part(new_indexes, new_data);
|
||||
} else {
|
||||
// `a` is not reducable by `b`, so return a
|
||||
return a;
|
||||
}
|
||||
}
|
||||
|
||||
void FountainDecoder::process_simple_part(Part& p) {
|
||||
// Don't process duplicate parts
|
||||
auto fragment_index = p.index();
|
||||
if(contains(received_part_indexes_, fragment_index)) return;
|
||||
|
||||
// Record this part
|
||||
_simple_parts.insert(pair(p.indexes(), p));
|
||||
received_part_indexes_.insert(fragment_index);
|
||||
|
||||
// If we've received all the parts
|
||||
if(received_part_indexes_ == _expected_part_indexes) {
|
||||
// Reassemble the message from its fragments
|
||||
vector<Part> sorted_parts;
|
||||
transform(_simple_parts.begin(), _simple_parts.end(), back_inserter(sorted_parts), [&](auto elem) { return elem.second; });
|
||||
sort(sorted_parts.begin(), sorted_parts.end(),
|
||||
[](const Part& a, const Part& b) -> bool {
|
||||
return a.index() < b.index();
|
||||
}
|
||||
);
|
||||
vector<ByteVector> fragments;
|
||||
transform(sorted_parts.begin(), sorted_parts.end(), back_inserter(fragments), [&](auto part) { return part.data(); });
|
||||
auto message = join_fragments(fragments, *_expected_message_len);
|
||||
|
||||
// Verify the message checksum and note success or failure
|
||||
auto checksum = crc32_int(message);
|
||||
if(checksum == _expected_checksum) {
|
||||
result_ = message;
|
||||
} else {
|
||||
result_ = InvalidChecksum();
|
||||
}
|
||||
} else {
|
||||
// Reduce all the mixed parts by this part
|
||||
reduce_mixed_by(p);
|
||||
}
|
||||
}
|
||||
|
||||
void FountainDecoder::process_mixed_part(const Part& p) {
|
||||
// Don't process duplicate parts
|
||||
if(any_of(_mixed_parts.begin(), _mixed_parts.end(), [&](auto r) { return r.first == p.indexes(); })) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Reduce this part by all the others
|
||||
auto p2 = accumulate(_simple_parts.begin(), _simple_parts.end(), p, [&](auto p, auto r) { return reduce_part_by_part(p, r.second); });
|
||||
p2 = accumulate(_mixed_parts.begin(), _mixed_parts.end(), p2, [&](auto p, auto r) { return reduce_part_by_part(p, r.second); });
|
||||
|
||||
// If the part is now simple
|
||||
if(p2.is_simple()) {
|
||||
// Add it to the queue
|
||||
enqueue(p2);
|
||||
} else {
|
||||
// Reduce all the mixed parts by this one
|
||||
reduce_mixed_by(p2);
|
||||
// Record this new mixed part
|
||||
_mixed_parts.insert(pair(p2.indexes(), p2));
|
||||
}
|
||||
}
|
||||
|
||||
bool FountainDecoder::validate_part(const FountainEncoder::Part& p) {
|
||||
// If this is the first part we've seen
|
||||
if(!_expected_part_indexes.has_value()) {
|
||||
// Record the things that all the other parts we see will have to match to be valid.
|
||||
_expected_part_indexes = PartIndexes();
|
||||
for(size_t i = 0; i < p.seq_len(); i++) { _expected_part_indexes->insert(i); }
|
||||
_expected_message_len = p.message_len();
|
||||
_expected_checksum = p.checksum();
|
||||
_expected_fragment_len = p.data().size();
|
||||
} else {
|
||||
// If this part's values don't match the first part's values, throw away the part
|
||||
if(expected_part_count() != p.seq_len()) return false;
|
||||
if(_expected_message_len != p.message_len()) return false;
|
||||
if(_expected_checksum != p.checksum()) return false;
|
||||
if(_expected_fragment_len != p.data().size()) return false;
|
||||
}
|
||||
// This part should be processed
|
||||
return true;
|
||||
}
|
||||
|
||||
string FountainDecoder::indexes_to_string(const PartIndexes& indexes) {
|
||||
auto i = vector<size_t>(indexes.begin(), indexes.end());
|
||||
sort(i.begin(), i.end());
|
||||
StringVector s;
|
||||
transform(i.begin(), i.end(), back_inserter(s), [](size_t a) { return to_string(a); });
|
||||
return "[" + join(s, ", ") + "]";
|
||||
}
|
||||
|
||||
void FountainDecoder::print_part(const Part& p) const {
|
||||
cout << "part indexes: " << indexes_to_string(p.indexes()) << endl;
|
||||
}
|
||||
|
||||
void FountainDecoder::print_part_end() const {
|
||||
auto expected = _expected_part_indexes.has_value() ? to_string(expected_part_count()) : "nil";
|
||||
auto percent = int(round(estimated_percent_complete() * 100));
|
||||
cout << "processed: " << processed_parts_count_ << ", expected: " << expected << ", received: " << received_part_indexes_.size() << ", percent: " << percent << "%" << endl;
|
||||
}
|
||||
|
||||
string FountainDecoder::result_description() const {
|
||||
string desc;
|
||||
if(!result_.has_value()) {
|
||||
desc = "nil";
|
||||
} else {
|
||||
auto r = *result_;
|
||||
if(holds_alternative<ByteVector>(r)) {
|
||||
desc = to_string(get<ByteVector>(r).size()) + " bytes";
|
||||
} else if(holds_alternative<exception>(r)) {
|
||||
desc = get<exception>(r).what();
|
||||
} else {
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
return desc;
|
||||
}
|
||||
|
||||
void FountainDecoder::print_state() const {
|
||||
auto parts = _expected_part_indexes.has_value() ? to_string(expected_part_count()) : "nil";
|
||||
auto received = indexes_to_string(received_part_indexes_);
|
||||
StringVector mixed;
|
||||
transform(_mixed_parts.begin(), _mixed_parts.end(), back_inserter(mixed), [](const pair<const PartIndexes, Part>& p) {
|
||||
return indexes_to_string(p.first);
|
||||
});
|
||||
auto mixed_s = "[" + join(mixed, ", ") + "]";
|
||||
auto queued = _queued_parts.size();
|
||||
auto res = result_description();
|
||||
cout << "parts: " << parts << ", received: " << received << ", mixed: " << mixed_s << ", queued: " << queued << ", result: " << res << endl;
|
||||
}
|
||||
|
||||
}
|
103
src/third-party/bcur/fountain-decoder.hpp
vendored
Normal file
103
src/third-party/bcur/fountain-decoder.hpp
vendored
Normal file
|
@ -0,0 +1,103 @@
|
|||
//
|
||||
// fountain-decoder.hpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#ifndef BC_UR_FOUNTAIN_DECODER_HPP
|
||||
#define BC_UR_FOUNTAIN_DECODER_HPP
|
||||
|
||||
#include "utils.hpp"
|
||||
#include "fountain-encoder.hpp"
|
||||
#include <map>
|
||||
#include <exception>
|
||||
#include <deque>
|
||||
#include <optional>
|
||||
#include <variant>
|
||||
|
||||
namespace ur {
|
||||
|
||||
class FountainDecoder final {
|
||||
public:
|
||||
typedef std::optional<std::variant<ByteVector, std::exception> > Result;
|
||||
|
||||
class InvalidPart: public std::exception { };
|
||||
class InvalidChecksum: public std::exception { };
|
||||
|
||||
FountainDecoder();
|
||||
|
||||
size_t expected_part_count() const { return _expected_part_indexes.value().size(); }
|
||||
const PartIndexes& received_part_indexes() const { return received_part_indexes_; }
|
||||
const PartIndexes& last_part_indexes() const { return last_part_indexes_.value(); }
|
||||
size_t processed_parts_count() const { return processed_parts_count_; }
|
||||
const Result& result() const { return result_; }
|
||||
bool is_success() const { return result() && std::holds_alternative<ByteVector>(result().value()); }
|
||||
bool is_failure() const { return result() && std::holds_alternative<std::exception>(result().value()); }
|
||||
bool is_complete() const { return result().has_value(); }
|
||||
const ByteVector& result_message() const { return std::get<ByteVector>(result().value()); }
|
||||
const std::exception& result_error() const { return std::get<std::exception>(result().value()); }
|
||||
|
||||
double estimated_percent_complete() const;
|
||||
bool receive_part(FountainEncoder::Part& encoder_part);
|
||||
|
||||
// Join all the fragments of a message together, throwing away any padding
|
||||
static const ByteVector join_fragments(const std::vector<ByteVector>& fragments, size_t message_len);
|
||||
|
||||
private:
|
||||
class Part {
|
||||
private:
|
||||
PartIndexes indexes_;
|
||||
ByteVector data_;
|
||||
|
||||
public:
|
||||
explicit Part(const FountainEncoder::Part& p);
|
||||
Part(PartIndexes& indexes, ByteVector& data);
|
||||
|
||||
const PartIndexes& indexes() const { return indexes_; }
|
||||
const ByteVector& data() const { return data_; }
|
||||
bool is_simple() const { return indexes_.size() == 1; }
|
||||
size_t index() const { return *indexes_.begin(); }
|
||||
};
|
||||
|
||||
PartIndexes received_part_indexes_;
|
||||
std::optional<PartIndexes> last_part_indexes_;
|
||||
size_t processed_parts_count_ = 0;
|
||||
|
||||
Result result_;
|
||||
|
||||
typedef std::map<PartIndexes, Part> PartDict;
|
||||
|
||||
std::optional<PartIndexes> _expected_part_indexes;
|
||||
std::optional<size_t> _expected_fragment_len;
|
||||
std::optional<size_t> _expected_message_len;
|
||||
std::optional<uint32_t> _expected_checksum;
|
||||
|
||||
PartDict _simple_parts;
|
||||
PartDict _mixed_parts;
|
||||
std::deque<Part> _queued_parts;
|
||||
|
||||
void enqueue(const Part &p);
|
||||
void enqueue(Part &&p);
|
||||
void process_queue_item();
|
||||
void reduce_mixed_by(const Part& p);
|
||||
Part reduce_part_by_part(const Part& a, const Part& b) const;
|
||||
void process_simple_part(Part& p);
|
||||
void process_mixed_part(const Part& p);
|
||||
bool validate_part(const FountainEncoder::Part& p);
|
||||
|
||||
// debugging
|
||||
static std::string indexes_to_string(const PartIndexes& indexes);
|
||||
std::string result_description() const;
|
||||
|
||||
// cppcheck-suppress unusedPrivateFunction
|
||||
void print_part(const Part& p) const;
|
||||
// cppcheck-suppress unusedPrivateFunction
|
||||
void print_part_end() const;
|
||||
// cppcheck-suppress unusedPrivateFunction
|
||||
void print_state() const;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // BC_UR_FOUNTAIN_DECODER_HPP
|
126
src/third-party/bcur/fountain-encoder.cpp
vendored
Normal file
126
src/third-party/bcur/fountain-encoder.cpp
vendored
Normal file
|
@ -0,0 +1,126 @@
|
|||
//
|
||||
// fountain-encoder.cpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#include "fountain-encoder.hpp"
|
||||
#include <assert.h>
|
||||
#include <cmath>
|
||||
#include <optional>
|
||||
#include <vector>
|
||||
#include <limits>
|
||||
#include "cbor-lite.hpp"
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace ur {
|
||||
|
||||
size_t FountainEncoder::find_nominal_fragment_length(size_t message_len, size_t min_fragment_len, size_t max_fragment_len) {
|
||||
assert(message_len > 0);
|
||||
assert(min_fragment_len > 0);
|
||||
assert(max_fragment_len >= min_fragment_len);
|
||||
auto max_fragment_count = message_len / min_fragment_len;
|
||||
optional<size_t> fragment_len;
|
||||
for(size_t fragment_count = 1; fragment_count <= max_fragment_count; fragment_count++) {
|
||||
fragment_len = size_t(ceil(double(message_len) / fragment_count));
|
||||
if(fragment_len <= max_fragment_len) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(fragment_len.has_value());
|
||||
return *fragment_len;
|
||||
}
|
||||
|
||||
vector<ByteVector> FountainEncoder::partition_message(const ByteVector &message, size_t fragment_len) {
|
||||
auto remaining = message;
|
||||
vector<ByteVector> fragments;
|
||||
while(!remaining.empty()) {
|
||||
auto a = split(remaining, fragment_len);
|
||||
auto fragment = a.first;
|
||||
remaining = a.second;
|
||||
auto padding = fragment_len - fragment.size();
|
||||
while(padding > 0) {
|
||||
fragment.push_back(0);
|
||||
padding--;
|
||||
}
|
||||
fragments.push_back(fragment);
|
||||
}
|
||||
return fragments;
|
||||
}
|
||||
|
||||
FountainEncoder::Part::Part(const ByteVector& cbor) {
|
||||
try {
|
||||
auto i = cbor.begin();
|
||||
auto end = cbor.end();
|
||||
size_t array_size;
|
||||
CborLite::decodeArraySize(i, end, array_size);
|
||||
if(array_size != 5) { throw InvalidHeader(); }
|
||||
|
||||
uint64_t n;
|
||||
|
||||
CborLite::decodeUnsigned(i, end, n);
|
||||
if(n > std::numeric_limits<decltype(seq_num_)>::max()) { throw InvalidHeader(); }
|
||||
seq_num_ = n;
|
||||
|
||||
CborLite::decodeUnsigned(i, end, n);
|
||||
if(n > std::numeric_limits<decltype(seq_len_)>::max()) { throw InvalidHeader(); }
|
||||
seq_len_ = n;
|
||||
|
||||
CborLite::decodeUnsigned(i, end, n);
|
||||
if(n > std::numeric_limits<decltype(message_len_)>::max()) { throw InvalidHeader(); }
|
||||
message_len_ = n;
|
||||
|
||||
CborLite::decodeUnsigned(i, end, n);
|
||||
if(n > std::numeric_limits<decltype(checksum_)>::max()) { throw InvalidHeader(); }
|
||||
checksum_ = n;
|
||||
|
||||
CborLite::decodeBytes(i, end, data_);
|
||||
} catch(...) {
|
||||
throw InvalidHeader();
|
||||
}
|
||||
}
|
||||
|
||||
ByteVector FountainEncoder::Part::cbor() const {
|
||||
using namespace CborLite;
|
||||
|
||||
ByteVector result;
|
||||
|
||||
encodeArraySize(result, (size_t)5);
|
||||
encodeInteger(result, seq_num());
|
||||
encodeInteger(result, seq_len());
|
||||
encodeInteger(result, message_len());
|
||||
encodeInteger(result, checksum());
|
||||
encodeBytes(result, data());
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
FountainEncoder::FountainEncoder(const ByteVector& message, size_t max_fragment_len, uint32_t first_seq_num, size_t min_fragment_len) {
|
||||
assert(message.size() <= std::numeric_limits<uint32_t>::max());
|
||||
message_len_ = message.size();
|
||||
checksum_ = crc32_int(message);
|
||||
fragment_len_ = find_nominal_fragment_length(message_len_, min_fragment_len, max_fragment_len);
|
||||
fragments_ = partition_message(message, fragment_len_);
|
||||
seq_num_ = first_seq_num;
|
||||
}
|
||||
|
||||
ByteVector FountainEncoder::mix(const PartIndexes& indexes) const {
|
||||
ByteVector result(fragment_len_, 0);
|
||||
for(auto index: indexes) { xor_into(result, fragments_[index]); }
|
||||
return result;
|
||||
}
|
||||
|
||||
FountainEncoder::Part FountainEncoder::next_part() {
|
||||
seq_num_ += 1; // wrap at period 2^32
|
||||
auto indexes = choose_fragments(seq_num_, seq_len(), checksum_);
|
||||
auto mixed = mix(indexes);
|
||||
return Part(seq_num_, seq_len(), message_len_, checksum_, mixed);
|
||||
}
|
||||
|
||||
string FountainEncoder::Part::description() const {
|
||||
return "seqNum:" + to_string(seq_num_) + ", seqLen:" + to_string(seq_len_) + ", messageLen:" + to_string(message_len_) + ", checksum:" + to_string(checksum_) + ", data:" + data_to_hex(data_);
|
||||
}
|
||||
|
||||
}
|
81
src/third-party/bcur/fountain-encoder.hpp
vendored
Normal file
81
src/third-party/bcur/fountain-encoder.hpp
vendored
Normal file
|
@ -0,0 +1,81 @@
|
|||
//
|
||||
// fountain-encoder.hpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#ifndef BC_UR_FOUNTAIN_ENCODER_HPP
|
||||
#define BC_UR_FOUNTAIN_ENCODER_HPP
|
||||
|
||||
#include <stddef.h>
|
||||
#include <vector>
|
||||
#include <exception>
|
||||
#include "utils.hpp"
|
||||
#include "fountain-utils.hpp"
|
||||
|
||||
namespace ur {
|
||||
|
||||
// Implements Luby transform code rateless coding
|
||||
// https://en.wikipedia.org/wiki/Luby_transform_code
|
||||
|
||||
class FountainEncoder final {
|
||||
public:
|
||||
class Part {
|
||||
public:
|
||||
class InvalidHeader: public std::exception { };
|
||||
|
||||
Part(uint32_t seq_num, size_t seq_len, size_t message_len, uint32_t checksum, const ByteVector& data)
|
||||
: seq_num_(seq_num), seq_len_(seq_len), message_len_(message_len), checksum_(checksum), data_(data)
|
||||
{ }
|
||||
explicit Part(const ByteVector& cbor);
|
||||
|
||||
uint32_t seq_num() const { return seq_num_; }
|
||||
size_t seq_len() const { return seq_len_; }
|
||||
size_t message_len() const { return message_len_; }
|
||||
uint32_t checksum() const { return checksum_; }
|
||||
const ByteVector& data() const { return data_; }
|
||||
|
||||
ByteVector cbor() const;
|
||||
std::string description() const;
|
||||
|
||||
private:
|
||||
uint32_t seq_num_;
|
||||
size_t seq_len_;
|
||||
size_t message_len_;
|
||||
uint32_t checksum_;
|
||||
ByteVector data_;
|
||||
};
|
||||
|
||||
FountainEncoder(const ByteVector& message, size_t max_fragment_len, uint32_t first_seq_num = 0, size_t min_fragment_len = 10);
|
||||
|
||||
static size_t find_nominal_fragment_length(size_t message_len, size_t min_fragment_len, size_t max_fragment_len);
|
||||
static std::vector<ByteVector> partition_message(const ByteVector &message, size_t fragment_len);
|
||||
|
||||
uint32_t seq_num() const { return seq_num_; }
|
||||
const PartIndexes& last_part_indexes() const { return last_part_indexes_; }
|
||||
size_t seq_len() const { return fragments_.size(); }
|
||||
|
||||
// This becomes `true` when the minimum number of parts
|
||||
// to relay the complete message have been generated
|
||||
bool is_complete() const { return seq_num_ >= seq_len(); }
|
||||
|
||||
/// True if only a single part will be generated.
|
||||
bool is_single_part() const { return seq_len() == 1; }
|
||||
|
||||
Part next_part();
|
||||
|
||||
private:
|
||||
size_t message_len_;
|
||||
uint32_t checksum_;
|
||||
size_t fragment_len_;
|
||||
std::vector<ByteVector> fragments_;
|
||||
uint32_t seq_num_;
|
||||
PartIndexes last_part_indexes_;
|
||||
|
||||
ByteVector mix(const PartIndexes& indexes) const;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // BC_UR_FOUNTAIN_ENCODER_HPP
|
43
src/third-party/bcur/fountain-utils.cpp
vendored
Normal file
43
src/third-party/bcur/fountain-utils.cpp
vendored
Normal file
|
@ -0,0 +1,43 @@
|
|||
//
|
||||
// fountain-utils.cpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#include "fountain-utils.hpp"
|
||||
#include "random-sampler.hpp"
|
||||
#include "utils.hpp"
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace ur {
|
||||
|
||||
size_t choose_degree(size_t seq_len, Xoshiro256& rng) {
|
||||
vector<double> degree_probabilities;
|
||||
for(int i = 1; i <= seq_len; i++) {
|
||||
degree_probabilities.push_back(1.0 / i);
|
||||
}
|
||||
auto degree_chooser = RandomSampler(degree_probabilities);
|
||||
return degree_chooser.next([&]() { return rng.next_double(); }) + 1;
|
||||
}
|
||||
|
||||
set<size_t> choose_fragments(uint32_t seq_num, size_t seq_len, uint32_t checksum) {
|
||||
// The first `seq_len` parts are the "pure" fragments, not mixed with any
|
||||
// others. This means that if you only generate the first `seq_len` parts,
|
||||
// then you have all the parts you need to decode the message.
|
||||
if(seq_num <= seq_len) {
|
||||
return set<size_t>({seq_num - 1});
|
||||
} else {
|
||||
auto seed = join(vector({int_to_bytes(seq_num), int_to_bytes(checksum)}));
|
||||
auto rng = Xoshiro256(seed);
|
||||
auto degree = choose_degree(seq_len, rng);
|
||||
vector<size_t> indexes;
|
||||
indexes.reserve(seq_len);
|
||||
for(int i = 0; i < seq_len; i++) { indexes.push_back(i); }
|
||||
auto shuffled_indexes = shuffled(indexes, rng);
|
||||
return set<size_t>(shuffled_indexes.begin(), shuffled_indexes.begin() + degree);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
61
src/third-party/bcur/fountain-utils.hpp
vendored
Normal file
61
src/third-party/bcur/fountain-utils.hpp
vendored
Normal file
|
@ -0,0 +1,61 @@
|
|||
//
|
||||
// fountain-utils.hpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#ifndef BC_UR_FOUNTAIN_UTILS_HPP
|
||||
#define BC_UR_FOUNTAIN_UTILS_HPP
|
||||
|
||||
#include <functional>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
#include <stdint.h>
|
||||
#include "xoshiro256.hpp"
|
||||
|
||||
namespace ur {
|
||||
|
||||
typedef std::set<size_t> PartIndexes;
|
||||
|
||||
// Fisher-Yates shuffle
|
||||
template<typename T>
|
||||
std::vector<T> shuffled(const std::vector<T>& items, Xoshiro256& rng) {
|
||||
auto remaining = items;
|
||||
std::vector<T> result;
|
||||
while(!remaining.empty()) {
|
||||
auto index = rng.next_int(0, remaining.size() - 1);
|
||||
auto item = remaining[index];
|
||||
remaining.erase(remaining.begin() + index);
|
||||
result.push_back(item);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// Return `true` if `a` is a strict subset of `b`.
|
||||
template<typename T>
|
||||
bool is_strict_subset(const std::set<T>& a, const std::set<T>& b) {
|
||||
if(a == b) { return false; }
|
||||
return std::includes(b.begin(), b.end(), a.begin(), a.end());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
std::set<T> set_difference(const std::set<T>& a, const std::set<T>& b) {
|
||||
std::set<T> result;
|
||||
std::set_difference(a.begin(), a.end(), b.begin(), b.end(), std::inserter(result, result.begin()));
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool contains(const std::set<T>& s, const T& v) {
|
||||
return s.find(v) != s.end();
|
||||
}
|
||||
|
||||
size_t choose_degree(size_t seq_len, Xoshiro256& rng);
|
||||
std::set<size_t> choose_fragments(uint32_t seq_num, size_t seq_len, uint32_t checksum);
|
||||
|
||||
}
|
||||
|
||||
#endif // BC_UR_FOUNTAIN_UTILS_HPP
|
84
src/third-party/bcur/memzero.c
vendored
Normal file
84
src/third-party/bcur/memzero.c
vendored
Normal file
|
@ -0,0 +1,84 @@
|
|||
#include "memzero.h"
|
||||
|
||||
#ifndef __STDC_WANT_LIB_EXT1__
|
||||
#define __STDC_WANT_LIB_EXT1__ 1 // C11's bounds-checking interface.
|
||||
#endif
|
||||
#include <string.h>
|
||||
|
||||
#ifdef _WIN32
|
||||
#include <Windows.h>
|
||||
#endif
|
||||
|
||||
#ifdef __unix__
|
||||
#include <strings.h>
|
||||
#include <sys/param.h>
|
||||
#endif
|
||||
|
||||
// C11's bounds-checking interface.
|
||||
#if defined(__STDC_LIB_EXT1__)
|
||||
#define HAVE_MEMSET_S 1
|
||||
#endif
|
||||
|
||||
// GNU C Library version 2.25 or later.
|
||||
#if defined(__GLIBC__) && \
|
||||
(__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 25))
|
||||
#define HAVE_EXPLICIT_BZERO 1
|
||||
#endif
|
||||
|
||||
// Newlib
|
||||
#if defined(__NEWLIB__)
|
||||
#define HAVE_EXPLICIT_BZERO 1
|
||||
#endif
|
||||
|
||||
// FreeBSD version 11.0 or later.
|
||||
#if defined(__FreeBSD__) && __FreeBSD_version >= 1100037
|
||||
#define HAVE_EXPLICIT_BZERO 1
|
||||
#endif
|
||||
|
||||
// OpenBSD version 5.5 or later.
|
||||
#if defined(__OpenBSD__) && OpenBSD >= 201405
|
||||
#define HAVE_EXPLICIT_BZERO 1
|
||||
#endif
|
||||
|
||||
// NetBSD version 7.2 or later.
|
||||
#if defined(__NetBSD__) && __NetBSD_Version__ >= 702000000
|
||||
#define HAVE_EXPLICIT_MEMSET 1
|
||||
#endif
|
||||
|
||||
// Adapted from
|
||||
// https://github.com/jedisct1/libsodium/blob/1647f0d53ae0e370378a9195477e3df0a792408f/src/libsodium/sodium/utils.c#L102-L130
|
||||
|
||||
void memzero(void *const pnt, const size_t len) {
|
||||
#ifdef _WIN32
|
||||
SecureZeroMemory(pnt, len);
|
||||
#elif defined(HAVE_MEMSET_S)
|
||||
memset_s(pnt, (rsize_t)len, 0, (rsize_t)len);
|
||||
#elif defined(HAVE_EXPLICIT_BZERO)
|
||||
bzero(pnt, len);
|
||||
#elif defined(HAVE_EXPLICIT_MEMSET)
|
||||
explicit_memset(pnt, 0, len);
|
||||
#else
|
||||
volatile unsigned char *volatile pnt_ = (volatile unsigned char *volatile)pnt;
|
||||
size_t i = (size_t)0U;
|
||||
|
||||
while (i < len) {
|
||||
pnt_[i++] = 0U;
|
||||
}
|
||||
|
||||
/* Memory barrier that scares the compiler away from optimizing out
|
||||
* the above loop.
|
||||
*
|
||||
* Quoting Adam Langley <agl@google.com> in commit
|
||||
* ad1907fe73334d6c696c8539646c21b11178f20f of BoringSSL (ISC License):
|
||||
*
|
||||
* As best as we can tell, this is sufficient to break any optimisations
|
||||
* that might try to eliminate "superfluous" memsets. This method is used
|
||||
* in memzero_explicit() the Linux kernel, too. Its advantage is that it
|
||||
* is pretty efficient because the compiler can still implement the
|
||||
* memset() efficiently, just not remove it entirely. See "Dead Store
|
||||
* Elimination (Still) Considered Harmful" by Yang et al. (USENIX Security
|
||||
* 2017) for more background.
|
||||
*/
|
||||
__asm__ __volatile__("" : : "r"(pnt_) : "memory");
|
||||
#endif
|
||||
}
|
8
src/third-party/bcur/memzero.h
vendored
Normal file
8
src/third-party/bcur/memzero.h
vendored
Normal file
|
@ -0,0 +1,8 @@
|
|||
#ifndef BC_UR_MEMZERO_H
|
||||
#define BC_UR_MEMZERO_H
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
void memzero(void* const pnt, const size_t len);
|
||||
|
||||
#endif // BC_UR_MEMZERO_H
|
84
src/third-party/bcur/random-sampler.cpp
vendored
Normal file
84
src/third-party/bcur/random-sampler.cpp
vendored
Normal file
|
@ -0,0 +1,84 @@
|
|||
//
|
||||
// random-sampler.cpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#include "random-sampler.hpp"
|
||||
#include <numeric>
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace ur {
|
||||
|
||||
RandomSampler::RandomSampler(std::vector<double> probs) {
|
||||
for(auto p: probs) { assert(p >= 0); }
|
||||
|
||||
// Normalize given probabilities
|
||||
auto sum = accumulate(probs.begin(), probs.end(), 0.0);
|
||||
assert(sum > 0);
|
||||
|
||||
auto n = probs.size();
|
||||
|
||||
vector<double> P;
|
||||
P.reserve(n);
|
||||
transform(probs.begin(), probs.end(), back_inserter(P), [&](double d) { return d * double(n) / sum; });
|
||||
|
||||
vector<int> S;
|
||||
S.reserve(n);
|
||||
vector<int> L;
|
||||
L.reserve(n);
|
||||
|
||||
// Set separate index lists for small and large probabilities:
|
||||
for(int i = n - 1; i >= 0; i--) {
|
||||
// at variance from Schwarz, we reverse the index order
|
||||
if(P[i] < 1) {
|
||||
S.push_back(i);
|
||||
} else {
|
||||
L.push_back(i);
|
||||
}
|
||||
}
|
||||
|
||||
// Work through index lists
|
||||
vector<double> _probs(n, 0);
|
||||
vector<int> _aliases(n, 0);
|
||||
while(!S.empty() && !L.empty()) {
|
||||
auto a = S.back(); S.pop_back(); // Schwarz's l
|
||||
auto g = L.back(); L.pop_back(); // Schwarz's g
|
||||
_probs[a] = P[a];
|
||||
_aliases[a] = g;
|
||||
P[g] += P[a] - 1;
|
||||
if(P[g] < 1) {
|
||||
S.push_back(g);
|
||||
} else {
|
||||
L.push_back(g);
|
||||
}
|
||||
}
|
||||
|
||||
while(!L.empty()) {
|
||||
_probs[L.back()] = 1;
|
||||
L.pop_back();
|
||||
}
|
||||
|
||||
while(!S.empty()) {
|
||||
// can only happen through numeric instability
|
||||
_probs[S.back()] = 1;
|
||||
S.pop_back();
|
||||
}
|
||||
|
||||
this->probs_ = _probs;
|
||||
this->aliases_ = _aliases;
|
||||
}
|
||||
|
||||
int RandomSampler::next(std::function<double()> rng) {
|
||||
auto r1 = rng();
|
||||
auto r2 = rng();
|
||||
auto n = probs_.size();
|
||||
auto i = int(double(n) * r1);
|
||||
return r2 < probs_[i] ? i : aliases_[i];
|
||||
}
|
||||
|
||||
}
|
38
src/third-party/bcur/random-sampler.hpp
vendored
Normal file
38
src/third-party/bcur/random-sampler.hpp
vendored
Normal file
|
@ -0,0 +1,38 @@
|
|||
//
|
||||
// random-sampler.hpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#ifndef BC_UR_RANDOM_SAMPLER_HPP
|
||||
#define BC_UR_RANDOM_SAMPLER_HPP
|
||||
|
||||
#include <vector>
|
||||
#include <functional>
|
||||
|
||||
// Random-number sampling using the Walker-Vose alias method,
|
||||
// as described by Keith Schwarz (2011)
|
||||
// http://www.keithschwarz.com/darts-dice-coins
|
||||
|
||||
// Based on C implementation:
|
||||
// https://jugit.fz-juelich.de/mlz/ransampl
|
||||
|
||||
// Translated to C++ by Wolf McNally
|
||||
|
||||
namespace ur {
|
||||
|
||||
class RandomSampler final {
|
||||
public:
|
||||
explicit RandomSampler(std::vector<double> probs);
|
||||
|
||||
int next(std::function<double()> rng);
|
||||
|
||||
private:
|
||||
std::vector<double> probs_;
|
||||
std::vector<int> aliases_;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // BC_UR_RANDOM_SAMPLER_HPP
|
889
src/third-party/bcur/sha2.c
vendored
Normal file
889
src/third-party/bcur/sha2.c
vendored
Normal file
|
@ -0,0 +1,889 @@
|
|||
/**
|
||||
* Copyright (c) 2000-2001 Aaron D. Gifford
|
||||
* Copyright (c) 2013-2014 Pavol Rusnak
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. Neither the name of the copyright holder nor the names of contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
#include "sha2.h"
|
||||
#include "memzero.h"
|
||||
|
||||
/*
|
||||
* ASSERT NOTE:
|
||||
* Some sanity checking code is included using assert(). On my FreeBSD
|
||||
* system, this additional code can be removed by compiling with NDEBUG
|
||||
* defined. Check your own systems manpage on assert() to see how to
|
||||
* compile WITHOUT the sanity checking code on your system.
|
||||
*
|
||||
* UNROLLED TRANSFORM LOOP NOTE:
|
||||
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
|
||||
* loop version for the hash transform rounds (defined using macros
|
||||
* later in this file). Either define on the command line, for example:
|
||||
*
|
||||
* cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
|
||||
*
|
||||
* or define below:
|
||||
*
|
||||
* #define SHA2_UNROLL_TRANSFORM
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
/*** SHA-256/384/512 Machine Architecture Definitions *****************/
|
||||
/*
|
||||
* BYTE_ORDER NOTE:
|
||||
*
|
||||
* Please make sure that your system defines BYTE_ORDER. If your
|
||||
* architecture is little-endian, make sure it also defines
|
||||
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
|
||||
* equivilent.
|
||||
*
|
||||
* If your system does not define the above, then you can do so by
|
||||
* hand like this:
|
||||
*
|
||||
* #define LITTLE_ENDIAN 1234
|
||||
* #define BIG_ENDIAN 4321
|
||||
*
|
||||
* And for little-endian machines, add:
|
||||
*
|
||||
* #define BYTE_ORDER LITTLE_ENDIAN
|
||||
*
|
||||
* Or for big-endian machines:
|
||||
*
|
||||
* #define BYTE_ORDER BIG_ENDIAN
|
||||
*
|
||||
* The FreeBSD machine this was written on defines BYTE_ORDER
|
||||
* appropriately by including <sys/types.h> (which in turn includes
|
||||
* <machine/endian.h> where the appropriate definitions are actually
|
||||
* made).
|
||||
*/
|
||||
|
||||
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
|
||||
#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
|
||||
#endif
|
||||
|
||||
typedef uint8_t sha2_byte; /* Exactly 1 byte */
|
||||
typedef uint32_t sha2_word32; /* Exactly 4 bytes */
|
||||
typedef uint64_t sha2_word64; /* Exactly 8 bytes */
|
||||
|
||||
/*** SHA-256/384/512 Various Length Definitions ***********************/
|
||||
/* NOTE: Most of these are in sha2.h */
|
||||
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
|
||||
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
|
||||
|
||||
/*
|
||||
* Macro for incrementally adding the unsigned 64-bit integer n to the
|
||||
* unsigned 128-bit integer (represented using a two-element array of
|
||||
* 64-bit words):
|
||||
*/
|
||||
#define ADDINC128(w,n) { \
|
||||
(w)[0] += (sha2_word64)(n); \
|
||||
if ((w)[0] < (n)) { \
|
||||
(w)[1]++; \
|
||||
} \
|
||||
}
|
||||
|
||||
#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
|
||||
|
||||
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
|
||||
/*
|
||||
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
|
||||
*
|
||||
* NOTE: In the original SHA-256/384/512 document, the shift-right
|
||||
* function was named R and the rotate-right function was called S.
|
||||
* (See: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf on the
|
||||
* web.)
|
||||
*
|
||||
* The newer NIST FIPS 180-2 document uses a much clearer naming
|
||||
* scheme, SHR for shift-right, ROTR for rotate-right, and ROTL for
|
||||
* rotate-left. (See:
|
||||
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
|
||||
* on the web.)
|
||||
*
|
||||
* WARNING: These macros must be used cautiously, since they reference
|
||||
* supplied parameters sometimes more than once, and thus could have
|
||||
* unexpected side-effects if used without taking this into account.
|
||||
*/
|
||||
|
||||
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
|
||||
#define SHR(b,x) ((x) >> (b))
|
||||
/* 32-bit Rotate-right (used in SHA-256): */
|
||||
#define ROTR32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
|
||||
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
|
||||
#define ROTR64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
|
||||
/* 32-bit Rotate-left (used in SHA-1): */
|
||||
#define ROTL32(b,x) (((x) << (b)) | ((x) >> (32 - (b))))
|
||||
|
||||
/* Two of six logical functions used in SHA-1, SHA-256, SHA-384, and SHA-512: */
|
||||
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
|
||||
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
|
||||
/* Function used in SHA-1: */
|
||||
#define Parity(x,y,z) ((x) ^ (y) ^ (z))
|
||||
|
||||
/* Four of six logical functions used in SHA-256: */
|
||||
#define Sigma0_256(x) (ROTR32(2, (x)) ^ ROTR32(13, (x)) ^ ROTR32(22, (x)))
|
||||
#define Sigma1_256(x) (ROTR32(6, (x)) ^ ROTR32(11, (x)) ^ ROTR32(25, (x)))
|
||||
#define sigma0_256(x) (ROTR32(7, (x)) ^ ROTR32(18, (x)) ^ SHR(3 , (x)))
|
||||
#define sigma1_256(x) (ROTR32(17, (x)) ^ ROTR32(19, (x)) ^ SHR(10, (x)))
|
||||
|
||||
/* Four of six logical functions used in SHA-384 and SHA-512: */
|
||||
#define Sigma0_512(x) (ROTR64(28, (x)) ^ ROTR64(34, (x)) ^ ROTR64(39, (x)))
|
||||
#define Sigma1_512(x) (ROTR64(14, (x)) ^ ROTR64(18, (x)) ^ ROTR64(41, (x)))
|
||||
#define sigma0_512(x) (ROTR64( 1, (x)) ^ ROTR64( 8, (x)) ^ SHR( 7, (x)))
|
||||
#define sigma1_512(x) (ROTR64(19, (x)) ^ ROTR64(61, (x)) ^ SHR( 6, (x)))
|
||||
|
||||
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
|
||||
/* NOTE: These should not be accessed directly from outside this
|
||||
* library -- they are intended for private internal visibility/use
|
||||
* only.
|
||||
*/
|
||||
static void sha512_Last(SHA512_CTX*);
|
||||
|
||||
|
||||
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
|
||||
|
||||
/* Hash constant words K for SHA-256: */
|
||||
static const sha2_word32 K256[64] = {
|
||||
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
|
||||
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
|
||||
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
|
||||
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
|
||||
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
|
||||
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
|
||||
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
|
||||
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
|
||||
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
|
||||
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
|
||||
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
|
||||
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
|
||||
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
|
||||
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
|
||||
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
|
||||
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
|
||||
};
|
||||
|
||||
/* Initial hash value H for SHA-256: */
|
||||
const sha2_word32 sha256_initial_hash_value[8] = {
|
||||
0x6a09e667UL,
|
||||
0xbb67ae85UL,
|
||||
0x3c6ef372UL,
|
||||
0xa54ff53aUL,
|
||||
0x510e527fUL,
|
||||
0x9b05688cUL,
|
||||
0x1f83d9abUL,
|
||||
0x5be0cd19UL
|
||||
};
|
||||
|
||||
/* Hash constant words K for SHA-384 and SHA-512: */
|
||||
static const sha2_word64 K512[80] = {
|
||||
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
|
||||
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
|
||||
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
|
||||
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
|
||||
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
|
||||
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
|
||||
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
|
||||
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
|
||||
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
|
||||
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
|
||||
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
|
||||
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
|
||||
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
|
||||
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
|
||||
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
|
||||
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
|
||||
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
|
||||
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
|
||||
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
|
||||
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
|
||||
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
|
||||
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
|
||||
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
|
||||
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
|
||||
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
|
||||
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
|
||||
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
|
||||
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
|
||||
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
|
||||
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
|
||||
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
|
||||
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
|
||||
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
|
||||
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
|
||||
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
|
||||
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
|
||||
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
|
||||
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
|
||||
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
|
||||
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
|
||||
};
|
||||
|
||||
/* Initial hash value H for SHA-512 */
|
||||
const sha2_word64 sha512_initial_hash_value[8] = {
|
||||
0x6a09e667f3bcc908ULL,
|
||||
0xbb67ae8584caa73bULL,
|
||||
0x3c6ef372fe94f82bULL,
|
||||
0xa54ff53a5f1d36f1ULL,
|
||||
0x510e527fade682d1ULL,
|
||||
0x9b05688c2b3e6c1fULL,
|
||||
0x1f83d9abfb41bd6bULL,
|
||||
0x5be0cd19137e2179ULL
|
||||
};
|
||||
|
||||
/*
|
||||
* Constant used by SHA256/384/512_End() functions for converting the
|
||||
* digest to a readable hexadecimal character string:
|
||||
*/
|
||||
static const char *sha2_hex_digits = "0123456789abcdef";
|
||||
|
||||
|
||||
/*** SHA-256: *********************************************************/
|
||||
void sha256_Init(SHA256_CTX* context) {
|
||||
if (context == (SHA256_CTX*)0) {
|
||||
return;
|
||||
}
|
||||
MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
|
||||
memzero(context->buffer, SHA256_BLOCK_LENGTH);
|
||||
context->bitcount = 0;
|
||||
}
|
||||
|
||||
#ifdef SHA2_UNROLL_TRANSFORM
|
||||
|
||||
/* Unrolled SHA-256 round macros: */
|
||||
|
||||
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
|
||||
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
|
||||
K256[j] + (W256[j] = *data++); \
|
||||
(d) += T1; \
|
||||
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
||||
j++
|
||||
|
||||
#define ROUND256(a,b,c,d,e,f,g,h) \
|
||||
s0 = W256[(j+1)&0x0f]; \
|
||||
s0 = sigma0_256(s0); \
|
||||
s1 = W256[(j+14)&0x0f]; \
|
||||
s1 = sigma1_256(s1); \
|
||||
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
|
||||
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
|
||||
(d) += T1; \
|
||||
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
||||
j++
|
||||
|
||||
void sha256_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
|
||||
sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0;
|
||||
sha2_word32 T1 = 0;
|
||||
sha2_word32 W256[16] = {0};
|
||||
int j = 0;
|
||||
|
||||
/* Initialize registers with the prev. intermediate value */
|
||||
a = state_in[0];
|
||||
b = state_in[1];
|
||||
c = state_in[2];
|
||||
d = state_in[3];
|
||||
e = state_in[4];
|
||||
f = state_in[5];
|
||||
g = state_in[6];
|
||||
h = state_in[7];
|
||||
|
||||
j = 0;
|
||||
do {
|
||||
/* Rounds 0 to 15 (unrolled): */
|
||||
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
|
||||
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
|
||||
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
|
||||
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
|
||||
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
|
||||
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
|
||||
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
|
||||
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
|
||||
} while (j < 16);
|
||||
|
||||
/* Now for the remaining rounds to 64: */
|
||||
do {
|
||||
ROUND256(a,b,c,d,e,f,g,h);
|
||||
ROUND256(h,a,b,c,d,e,f,g);
|
||||
ROUND256(g,h,a,b,c,d,e,f);
|
||||
ROUND256(f,g,h,a,b,c,d,e);
|
||||
ROUND256(e,f,g,h,a,b,c,d);
|
||||
ROUND256(d,e,f,g,h,a,b,c);
|
||||
ROUND256(c,d,e,f,g,h,a,b);
|
||||
ROUND256(b,c,d,e,f,g,h,a);
|
||||
} while (j < 64);
|
||||
|
||||
/* Compute the current intermediate hash value */
|
||||
state_out[0] = state_in[0] + a;
|
||||
state_out[1] = state_in[1] + b;
|
||||
state_out[2] = state_in[2] + c;
|
||||
state_out[3] = state_in[3] + d;
|
||||
state_out[4] = state_in[4] + e;
|
||||
state_out[5] = state_in[5] + f;
|
||||
state_out[6] = state_in[6] + g;
|
||||
state_out[7] = state_in[7] + h;
|
||||
|
||||
/* Clean up */
|
||||
// cppcheck-suppress unreadVariable
|
||||
a = b = c = d = e = f = g = h = T1 = 0;
|
||||
}
|
||||
|
||||
#else /* SHA2_UNROLL_TRANSFORM */
|
||||
|
||||
void sha256_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
|
||||
sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0;
|
||||
sha2_word32 T1 = 0, T2 = 0 , W256[16] = {0};
|
||||
int j = 0;
|
||||
|
||||
/* Initialize registers with the prev. intermediate value */
|
||||
a = state_in[0];
|
||||
b = state_in[1];
|
||||
c = state_in[2];
|
||||
d = state_in[3];
|
||||
e = state_in[4];
|
||||
f = state_in[5];
|
||||
g = state_in[6];
|
||||
h = state_in[7];
|
||||
|
||||
j = 0;
|
||||
do {
|
||||
/* Apply the SHA-256 compression function to update a..h with copy */
|
||||
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
|
||||
T2 = Sigma0_256(a) + Maj(a, b, c);
|
||||
h = g;
|
||||
g = f;
|
||||
f = e;
|
||||
e = d + T1;
|
||||
d = c;
|
||||
c = b;
|
||||
b = a;
|
||||
a = T1 + T2;
|
||||
|
||||
j++;
|
||||
} while (j < 16);
|
||||
|
||||
do {
|
||||
/* Part of the message block expansion: */
|
||||
sha2_word32 s0 = 0, s1 = 0;
|
||||
s0 = W256[(j+1)&0x0f];
|
||||
s0 = sigma0_256(s0);
|
||||
s1 = W256[(j+14)&0x0f];
|
||||
s1 = sigma1_256(s1);
|
||||
|
||||
/* Apply the SHA-256 compression function to update a..h */
|
||||
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
|
||||
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
|
||||
T2 = Sigma0_256(a) + Maj(a, b, c);
|
||||
h = g;
|
||||
g = f;
|
||||
f = e;
|
||||
e = d + T1;
|
||||
d = c;
|
||||
c = b;
|
||||
b = a;
|
||||
a = T1 + T2;
|
||||
|
||||
j++;
|
||||
} while (j < 64);
|
||||
|
||||
/* Compute the current intermediate hash value */
|
||||
state_out[0] = state_in[0] + a;
|
||||
state_out[1] = state_in[1] + b;
|
||||
state_out[2] = state_in[2] + c;
|
||||
state_out[3] = state_in[3] + d;
|
||||
state_out[4] = state_in[4] + e;
|
||||
state_out[5] = state_in[5] + f;
|
||||
state_out[6] = state_in[6] + g;
|
||||
state_out[7] = state_in[7] + h;
|
||||
|
||||
/* Clean up */
|
||||
// cppcheck-suppress unreadVariable
|
||||
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
||||
}
|
||||
|
||||
#endif /* SHA2_UNROLL_TRANSFORM */
|
||||
|
||||
void sha256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
|
||||
unsigned int freespace = 0, usedspace = 0;
|
||||
|
||||
if (len == 0) {
|
||||
/* Calling with no data is valid - we do nothing */
|
||||
return;
|
||||
}
|
||||
|
||||
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
||||
if (usedspace > 0) {
|
||||
/* Calculate how much free space is available in the buffer */
|
||||
freespace = SHA256_BLOCK_LENGTH - usedspace;
|
||||
|
||||
if (len >= freespace) {
|
||||
/* Fill the buffer completely and process it */
|
||||
MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, freespace);
|
||||
context->bitcount += freespace << 3;
|
||||
len -= freespace;
|
||||
data += freespace;
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
/* Convert TO host byte order */
|
||||
for (int j = 0; j < 16; j++) {
|
||||
REVERSE32(context->buffer[j],context->buffer[j]);
|
||||
}
|
||||
#endif
|
||||
sha256_Transform(context->state, context->buffer, context->state);
|
||||
} else {
|
||||
/* The buffer is not yet full */
|
||||
MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, len);
|
||||
context->bitcount += len << 3;
|
||||
/* Clean up: */
|
||||
// cppcheck-suppress unreadVariable
|
||||
usedspace = freespace = 0;
|
||||
return;
|
||||
}
|
||||
}
|
||||
while (len >= SHA256_BLOCK_LENGTH) {
|
||||
/* Process as many complete blocks as we can */
|
||||
MEMCPY_BCOPY(context->buffer, data, SHA256_BLOCK_LENGTH);
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
/* Convert TO host byte order */
|
||||
for (int j = 0; j < 16; j++) {
|
||||
REVERSE32(context->buffer[j],context->buffer[j]);
|
||||
}
|
||||
#endif
|
||||
sha256_Transform(context->state, context->buffer, context->state);
|
||||
context->bitcount += SHA256_BLOCK_LENGTH << 3;
|
||||
len -= SHA256_BLOCK_LENGTH;
|
||||
data += SHA256_BLOCK_LENGTH;
|
||||
}
|
||||
if (len > 0) {
|
||||
/* There's left-overs, so save 'em */
|
||||
MEMCPY_BCOPY(context->buffer, data, len);
|
||||
context->bitcount += len << 3;
|
||||
}
|
||||
/* Clean up: */
|
||||
// cppcheck-suppress unreadVariable
|
||||
usedspace = freespace = 0;
|
||||
}
|
||||
|
||||
void sha256_Final(SHA256_CTX* context, sha2_byte digest[]) {
|
||||
unsigned int usedspace = 0;
|
||||
|
||||
/* If no digest buffer is passed, we don't bother doing this: */
|
||||
if (digest != (sha2_byte*)0) {
|
||||
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
||||
/* Begin padding with a 1 bit: */
|
||||
((uint8_t*)context->buffer)[usedspace++] = 0x80;
|
||||
|
||||
if (usedspace > SHA256_SHORT_BLOCK_LENGTH) {
|
||||
memzero(((uint8_t*)context->buffer) + usedspace, SHA256_BLOCK_LENGTH - usedspace);
|
||||
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
/* Convert TO host byte order */
|
||||
for (int j = 0; j < 16; j++) {
|
||||
REVERSE32(context->buffer[j],context->buffer[j]);
|
||||
}
|
||||
#endif
|
||||
/* Do second-to-last transform: */
|
||||
sha256_Transform(context->state, context->buffer, context->state);
|
||||
|
||||
/* And prepare the last transform: */
|
||||
usedspace = 0;
|
||||
}
|
||||
/* Set-up for the last transform: */
|
||||
memzero(((uint8_t*)context->buffer) + usedspace, SHA256_SHORT_BLOCK_LENGTH - usedspace);
|
||||
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
/* Convert TO host byte order */
|
||||
for (int j = 0; j < 14; j++) {
|
||||
REVERSE32(context->buffer[j],context->buffer[j]);
|
||||
}
|
||||
#endif
|
||||
/* Set the bit count: */
|
||||
context->buffer[14] = context->bitcount >> 32;
|
||||
context->buffer[15] = context->bitcount & 0xffffffff;
|
||||
|
||||
/* Final transform: */
|
||||
sha256_Transform(context->state, context->buffer, context->state);
|
||||
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
/* Convert FROM host byte order */
|
||||
for (int j = 0; j < 8; j++) {
|
||||
REVERSE32(context->state[j],context->state[j]);
|
||||
}
|
||||
#endif
|
||||
MEMCPY_BCOPY(digest, context->state, SHA256_DIGEST_LENGTH);
|
||||
}
|
||||
|
||||
/* Clean up state data: */
|
||||
memzero(context, sizeof(SHA256_CTX));
|
||||
// cppcheck-suppress unreadVariable
|
||||
usedspace = 0;
|
||||
}
|
||||
|
||||
char *sha256_End(SHA256_CTX* context, char buffer[]) {
|
||||
sha2_byte digest[SHA256_DIGEST_LENGTH] = {0}, *d = digest;
|
||||
|
||||
if (buffer != (char*)0) {
|
||||
sha256_Final(context, digest);
|
||||
|
||||
for (int i = 0; i < SHA256_DIGEST_LENGTH; i++) {
|
||||
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
|
||||
*buffer++ = sha2_hex_digits[*d & 0x0f];
|
||||
d++;
|
||||
}
|
||||
*buffer = (char)0;
|
||||
} else {
|
||||
memzero(context, sizeof(SHA256_CTX));
|
||||
}
|
||||
memzero(digest, SHA256_DIGEST_LENGTH);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
void sha256_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA256_DIGEST_LENGTH]) {
|
||||
SHA256_CTX context = {0};
|
||||
sha256_Init(&context);
|
||||
sha256_Update(&context, data, len);
|
||||
sha256_Final(&context, digest);
|
||||
}
|
||||
|
||||
char* sha256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
|
||||
SHA256_CTX context = {0};
|
||||
|
||||
sha256_Init(&context);
|
||||
sha256_Update(&context, data, len);
|
||||
return sha256_End(&context, digest);
|
||||
}
|
||||
|
||||
|
||||
/*** SHA-512: *********************************************************/
|
||||
void sha512_Init(SHA512_CTX* context) {
|
||||
if (context == (SHA512_CTX*)0) {
|
||||
return;
|
||||
}
|
||||
MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
|
||||
memzero(context->buffer, SHA512_BLOCK_LENGTH);
|
||||
context->bitcount[0] = context->bitcount[1] = 0;
|
||||
}
|
||||
|
||||
#ifdef SHA2_UNROLL_TRANSFORM
|
||||
|
||||
/* Unrolled SHA-512 round macros: */
|
||||
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
|
||||
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
|
||||
K512[j] + (W512[j] = *data++); \
|
||||
(d) += T1; \
|
||||
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
|
||||
j++
|
||||
|
||||
#define ROUND512(a,b,c,d,e,f,g,h) \
|
||||
s0 = W512[(j+1)&0x0f]; \
|
||||
s0 = sigma0_512(s0); \
|
||||
s1 = W512[(j+14)&0x0f]; \
|
||||
s1 = sigma1_512(s1); \
|
||||
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
|
||||
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
|
||||
(d) += T1; \
|
||||
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
|
||||
j++
|
||||
|
||||
void sha512_Transform(const sha2_word64* state_in, const sha2_word64* data, sha2_word64* state_out) {
|
||||
sha2_word64 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0;
|
||||
sha2_word64 T1 = 0, W512[16] = {0};
|
||||
int j = 0;
|
||||
|
||||
/* Initialize registers with the prev. intermediate value */
|
||||
a = state_in[0];
|
||||
b = state_in[1];
|
||||
c = state_in[2];
|
||||
d = state_in[3];
|
||||
e = state_in[4];
|
||||
f = state_in[5];
|
||||
g = state_in[6];
|
||||
h = state_in[7];
|
||||
|
||||
j = 0;
|
||||
do {
|
||||
ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
|
||||
ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
|
||||
ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
|
||||
ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
|
||||
ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
|
||||
ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
|
||||
ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
|
||||
ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
|
||||
} while (j < 16);
|
||||
|
||||
/* Now for the remaining rounds up to 79: */
|
||||
do {
|
||||
ROUND512(a,b,c,d,e,f,g,h);
|
||||
ROUND512(h,a,b,c,d,e,f,g);
|
||||
ROUND512(g,h,a,b,c,d,e,f);
|
||||
ROUND512(f,g,h,a,b,c,d,e);
|
||||
ROUND512(e,f,g,h,a,b,c,d);
|
||||
ROUND512(d,e,f,g,h,a,b,c);
|
||||
ROUND512(c,d,e,f,g,h,a,b);
|
||||
ROUND512(b,c,d,e,f,g,h,a);
|
||||
} while (j < 80);
|
||||
|
||||
/* Compute the current intermediate hash value */
|
||||
state_out[0] = state_in[0] + a;
|
||||
state_out[1] = state_in[1] + b;
|
||||
state_out[2] = state_in[2] + c;
|
||||
state_out[3] = state_in[3] + d;
|
||||
state_out[4] = state_in[4] + e;
|
||||
state_out[5] = state_in[5] + f;
|
||||
state_out[6] = state_in[6] + g;
|
||||
state_out[7] = state_in[7] + h;
|
||||
|
||||
/* Clean up */
|
||||
// cppcheck-suppress unreadVariable
|
||||
a = b = c = d = e = f = g = h = T1 = 0;
|
||||
}
|
||||
|
||||
#else /* SHA2_UNROLL_TRANSFORM */
|
||||
|
||||
void sha512_Transform(const sha2_word64* state_in, const sha2_word64* data, sha2_word64* state_out) {
|
||||
sha2_word64 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0;
|
||||
sha2_word64 T1 = 0, T2 = 0, W512[16] = {0};
|
||||
int j = 0;
|
||||
|
||||
/* Initialize registers with the prev. intermediate value */
|
||||
a = state_in[0];
|
||||
b = state_in[1];
|
||||
c = state_in[2];
|
||||
d = state_in[3];
|
||||
e = state_in[4];
|
||||
f = state_in[5];
|
||||
g = state_in[6];
|
||||
h = state_in[7];
|
||||
|
||||
j = 0;
|
||||
do {
|
||||
/* Apply the SHA-512 compression function to update a..h with copy */
|
||||
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
|
||||
T2 = Sigma0_512(a) + Maj(a, b, c);
|
||||
h = g;
|
||||
g = f;
|
||||
f = e;
|
||||
e = d + T1;
|
||||
d = c;
|
||||
c = b;
|
||||
b = a;
|
||||
a = T1 + T2;
|
||||
|
||||
j++;
|
||||
} while (j < 16);
|
||||
|
||||
do {
|
||||
/* Part of the message block expansion: */
|
||||
sha2_word64 s0 = 0, s1 = 0;
|
||||
s0 = W512[(j+1)&0x0f];
|
||||
s0 = sigma0_512(s0);
|
||||
s1 = W512[(j+14)&0x0f];
|
||||
s1 = sigma1_512(s1);
|
||||
|
||||
/* Apply the SHA-512 compression function to update a..h */
|
||||
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
|
||||
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
|
||||
T2 = Sigma0_512(a) + Maj(a, b, c);
|
||||
h = g;
|
||||
g = f;
|
||||
f = e;
|
||||
e = d + T1;
|
||||
d = c;
|
||||
c = b;
|
||||
b = a;
|
||||
a = T1 + T2;
|
||||
|
||||
j++;
|
||||
} while (j < 80);
|
||||
|
||||
/* Compute the current intermediate hash value */
|
||||
state_out[0] = state_in[0] + a;
|
||||
state_out[1] = state_in[1] + b;
|
||||
state_out[2] = state_in[2] + c;
|
||||
state_out[3] = state_in[3] + d;
|
||||
state_out[4] = state_in[4] + e;
|
||||
state_out[5] = state_in[5] + f;
|
||||
state_out[6] = state_in[6] + g;
|
||||
state_out[7] = state_in[7] + h;
|
||||
|
||||
/* Clean up */
|
||||
// cppcheck-suppress unreadVariable
|
||||
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
||||
}
|
||||
|
||||
#endif /* SHA2_UNROLL_TRANSFORM */
|
||||
|
||||
void sha512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
|
||||
unsigned int freespace = 0, usedspace = 0;
|
||||
|
||||
if (len == 0) {
|
||||
/* Calling with no data is valid - we do nothing */
|
||||
return;
|
||||
}
|
||||
|
||||
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
|
||||
if (usedspace > 0) {
|
||||
/* Calculate how much free space is available in the buffer */
|
||||
freespace = SHA512_BLOCK_LENGTH - usedspace;
|
||||
|
||||
if (len >= freespace) {
|
||||
/* Fill the buffer completely and process it */
|
||||
MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, freespace);
|
||||
ADDINC128(context->bitcount, freespace << 3);
|
||||
len -= freespace;
|
||||
data += freespace;
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
/* Convert TO host byte order */
|
||||
for (int j = 0; j < 16; j++) {
|
||||
REVERSE64(context->buffer[j],context->buffer[j]);
|
||||
}
|
||||
#endif
|
||||
sha512_Transform(context->state, context->buffer, context->state);
|
||||
} else {
|
||||
/* The buffer is not yet full */
|
||||
MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, len);
|
||||
ADDINC128(context->bitcount, len << 3);
|
||||
/* Clean up: */
|
||||
// cppcheck-suppress unreadVariable
|
||||
usedspace = freespace = 0;
|
||||
return;
|
||||
}
|
||||
}
|
||||
while (len >= SHA512_BLOCK_LENGTH) {
|
||||
/* Process as many complete blocks as we can */
|
||||
MEMCPY_BCOPY(context->buffer, data, SHA512_BLOCK_LENGTH);
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
/* Convert TO host byte order */
|
||||
for (int j = 0; j < 16; j++) {
|
||||
REVERSE64(context->buffer[j],context->buffer[j]);
|
||||
}
|
||||
#endif
|
||||
sha512_Transform(context->state, context->buffer, context->state);
|
||||
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
|
||||
len -= SHA512_BLOCK_LENGTH;
|
||||
data += SHA512_BLOCK_LENGTH;
|
||||
}
|
||||
if (len > 0) {
|
||||
/* There's left-overs, so save 'em */
|
||||
MEMCPY_BCOPY(context->buffer, data, len);
|
||||
ADDINC128(context->bitcount, len << 3);
|
||||
}
|
||||
/* Clean up: */
|
||||
// cppcheck-suppress unreadVariable
|
||||
usedspace = freespace = 0;
|
||||
}
|
||||
|
||||
static void sha512_Last(SHA512_CTX* context) {
|
||||
unsigned int usedspace = 0;
|
||||
|
||||
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
|
||||
/* Begin padding with a 1 bit: */
|
||||
((uint8_t*)context->buffer)[usedspace++] = 0x80;
|
||||
|
||||
if (usedspace > SHA512_SHORT_BLOCK_LENGTH) {
|
||||
memzero(((uint8_t*)context->buffer) + usedspace, SHA512_BLOCK_LENGTH - usedspace);
|
||||
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
/* Convert TO host byte order */
|
||||
for (int j = 0; j < 16; j++) {
|
||||
REVERSE64(context->buffer[j],context->buffer[j]);
|
||||
}
|
||||
#endif
|
||||
/* Do second-to-last transform: */
|
||||
sha512_Transform(context->state, context->buffer, context->state);
|
||||
|
||||
/* And prepare the last transform: */
|
||||
usedspace = 0;
|
||||
}
|
||||
/* Set-up for the last transform: */
|
||||
memzero(((uint8_t*)context->buffer) + usedspace, SHA512_SHORT_BLOCK_LENGTH - usedspace);
|
||||
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
/* Convert TO host byte order */
|
||||
for (int j = 0; j < 14; j++) {
|
||||
REVERSE64(context->buffer[j],context->buffer[j]);
|
||||
}
|
||||
#endif
|
||||
/* Store the length of input data (in bits): */
|
||||
context->buffer[14] = context->bitcount[1];
|
||||
context->buffer[15] = context->bitcount[0];
|
||||
|
||||
/* Final transform: */
|
||||
sha512_Transform(context->state, context->buffer, context->state);
|
||||
}
|
||||
|
||||
void sha512_Final(SHA512_CTX* context, sha2_byte digest[]) {
|
||||
/* If no digest buffer is passed, we don't bother doing this: */
|
||||
if (digest != (sha2_byte*)0) {
|
||||
sha512_Last(context);
|
||||
|
||||
/* Save the hash data for output: */
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
/* Convert FROM host byte order */
|
||||
for (int j = 0; j < 8; j++) {
|
||||
REVERSE64(context->state[j],context->state[j]);
|
||||
}
|
||||
#endif
|
||||
MEMCPY_BCOPY(digest, context->state, SHA512_DIGEST_LENGTH);
|
||||
}
|
||||
|
||||
/* Zero out state data */
|
||||
memzero(context, sizeof(SHA512_CTX));
|
||||
}
|
||||
|
||||
char *sha512_End(SHA512_CTX* context, char buffer[]) {
|
||||
sha2_byte digest[SHA512_DIGEST_LENGTH] = {0}, *d = digest;
|
||||
|
||||
if (buffer != (char*)0) {
|
||||
sha512_Final(context, digest);
|
||||
|
||||
for (int i = 0; i < SHA512_DIGEST_LENGTH; i++) {
|
||||
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
|
||||
*buffer++ = sha2_hex_digits[*d & 0x0f];
|
||||
d++;
|
||||
}
|
||||
*buffer = (char)0;
|
||||
} else {
|
||||
memzero(context, sizeof(SHA512_CTX));
|
||||
}
|
||||
memzero(digest, SHA512_DIGEST_LENGTH);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
void sha512_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA512_DIGEST_LENGTH]) {
|
||||
SHA512_CTX context = {0};
|
||||
sha512_Init(&context);
|
||||
sha512_Update(&context, data, len);
|
||||
sha512_Final(&context, digest);
|
||||
}
|
||||
|
||||
char* sha512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
|
||||
SHA512_CTX context = {0};
|
||||
|
||||
sha512_Init(&context);
|
||||
sha512_Update(&context, data, len);
|
||||
return sha512_End(&context, digest);
|
||||
}
|
100
src/third-party/bcur/sha2.h
vendored
Normal file
100
src/third-party/bcur/sha2.h
vendored
Normal file
|
@ -0,0 +1,100 @@
|
|||
/**
|
||||
* Copyright (c) 2000-2001 Aaron D. Gifford
|
||||
* Copyright (c) 2013-2014 Pavol Rusnak
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. Neither the name of the copyright holder nor the names of contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef BC_UR_SHA2_H
|
||||
#define BC_UR_SHA2_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#define SHA256_BLOCK_LENGTH 64
|
||||
#define SHA256_DIGEST_LENGTH 32
|
||||
#define SHA256_DIGEST_STRING_LENGTH (SHA256_DIGEST_LENGTH * 2 + 1)
|
||||
#define SHA512_BLOCK_LENGTH 128
|
||||
#define SHA512_DIGEST_LENGTH 64
|
||||
#define SHA512_DIGEST_STRING_LENGTH (SHA512_DIGEST_LENGTH * 2 + 1)
|
||||
|
||||
typedef struct _SHA256_CTX {
|
||||
uint32_t state[8];
|
||||
uint64_t bitcount;
|
||||
uint32_t buffer[SHA256_BLOCK_LENGTH/sizeof(uint32_t)];
|
||||
} SHA256_CTX;
|
||||
typedef struct _SHA512_CTX {
|
||||
uint64_t state[8];
|
||||
uint64_t bitcount[2];
|
||||
uint64_t buffer[SHA512_BLOCK_LENGTH/sizeof(uint64_t)];
|
||||
} SHA512_CTX;
|
||||
|
||||
/*** ENDIAN REVERSAL MACROS *******************************************/
|
||||
#ifndef LITTLE_ENDIAN
|
||||
#define LITTLE_ENDIAN 1234
|
||||
#define BIG_ENDIAN 4321
|
||||
#endif
|
||||
|
||||
#ifndef BYTE_ORDER
|
||||
#define BYTE_ORDER LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
#define REVERSE32(w,x) { \
|
||||
uint32_t tmp = (w); \
|
||||
tmp = (tmp >> 16) | (tmp << 16); \
|
||||
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
|
||||
}
|
||||
#define REVERSE64(w,x) { \
|
||||
uint64_t tmp = (w); \
|
||||
tmp = (tmp >> 32) | (tmp << 32); \
|
||||
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
|
||||
((tmp & 0x00ff00ff00ff00ffULL) << 8); \
|
||||
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
|
||||
((tmp & 0x0000ffff0000ffffULL) << 16); \
|
||||
}
|
||||
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
||||
|
||||
extern const uint32_t sha256_initial_hash_value[8];
|
||||
extern const uint64_t sha512_initial_hash_value[8];
|
||||
|
||||
void sha256_Transform(const uint32_t* state_in, const uint32_t* data, uint32_t* state_out);
|
||||
void sha256_Init(SHA256_CTX *);
|
||||
void sha256_Update(SHA256_CTX*, const uint8_t*, size_t);
|
||||
void sha256_Final(SHA256_CTX*, uint8_t[SHA256_DIGEST_LENGTH]);
|
||||
char* sha256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
|
||||
void sha256_Raw(const uint8_t*, size_t, uint8_t[SHA256_DIGEST_LENGTH]);
|
||||
char* sha256_Data(const uint8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
|
||||
|
||||
void sha512_Transform(const uint64_t* state_in, const uint64_t* data, uint64_t* state_out);
|
||||
void sha512_Init(SHA512_CTX*);
|
||||
void sha512_Update(SHA512_CTX*, const uint8_t*, size_t);
|
||||
void sha512_Final(SHA512_CTX*, uint8_t[SHA512_DIGEST_LENGTH]);
|
||||
char* sha512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
|
||||
void sha512_Raw(const uint8_t*, size_t, uint8_t[SHA512_DIGEST_LENGTH]);
|
||||
char* sha512_Data(const uint8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
|
||||
|
||||
#endif // BC_UR_SHA2_H
|
119
src/third-party/bcur/ur-decoder.cpp
vendored
Normal file
119
src/third-party/bcur/ur-decoder.cpp
vendored
Normal file
|
@ -0,0 +1,119 @@
|
|||
//
|
||||
// ur-decoder.cpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#include "ur-decoder.hpp"
|
||||
#include "bytewords.hpp"
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace ur {
|
||||
|
||||
UR URDecoder::decode(const string& s) {
|
||||
auto [type, components] = parse(s);
|
||||
|
||||
if(components.empty()) throw InvalidPathLength();
|
||||
auto body = components.front();
|
||||
|
||||
return decode(type, body);
|
||||
}
|
||||
|
||||
URDecoder::URDecoder() { }
|
||||
|
||||
UR URDecoder::decode(const std::string& type, const std::string& body) {
|
||||
auto cbor = Bytewords::decode(Bytewords::style::minimal, body);
|
||||
return UR(type, cbor);
|
||||
}
|
||||
|
||||
pair<string, StringVector> URDecoder::parse(const string& s) {
|
||||
// Don't consider case
|
||||
auto lowered = to_lowercase(s);
|
||||
|
||||
// Validate URI scheme
|
||||
if(!has_prefix(lowered, "ur:")) throw InvalidScheme();
|
||||
auto path = drop_first(lowered, 3);
|
||||
|
||||
// Split the remainder into path components
|
||||
auto components = split(path, '/');
|
||||
|
||||
// Make sure there are at least two path components
|
||||
if(components.size() < 2) throw InvalidPathLength();
|
||||
|
||||
// Validate the type
|
||||
auto type = components.front();
|
||||
if(!is_ur_type(type)) throw InvalidType();
|
||||
|
||||
auto comps = StringVector(components.begin() + 1, components.end());
|
||||
return pair(type, comps);
|
||||
}
|
||||
|
||||
pair<uint32_t, size_t> URDecoder::parse_sequence_component(const string& s) {
|
||||
try {
|
||||
auto comps = split(s, '-');
|
||||
if(comps.size() != 2) throw InvalidSequenceComponent();
|
||||
uint32_t seq_num = stoul(comps[0]);
|
||||
size_t seq_len = stoul(comps[1]);
|
||||
if(seq_num < 1 || seq_len < 1) throw InvalidSequenceComponent();
|
||||
return pair(seq_num, seq_len);
|
||||
} catch(...) {
|
||||
throw InvalidSequenceComponent();
|
||||
}
|
||||
}
|
||||
|
||||
bool URDecoder::validate_part(const std::string& type) {
|
||||
if(!expected_type_.has_value()) {
|
||||
if(!is_ur_type(type)) return false;
|
||||
expected_type_ = type;
|
||||
return true;
|
||||
} else {
|
||||
return type == expected_type_;
|
||||
}
|
||||
}
|
||||
|
||||
bool URDecoder::receive_part(const std::string& s) {
|
||||
try {
|
||||
// Don't process the part if we're already done
|
||||
if(result_.has_value()) return false;
|
||||
|
||||
// Don't continue if this part doesn't validate
|
||||
auto [type, components] = parse(s);
|
||||
if(!validate_part(type)) return false;
|
||||
|
||||
// If this is a single-part UR then we're done
|
||||
if(components.size() == 1) {
|
||||
auto body = components.front();
|
||||
result_ = decode(type, body);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Multi-part URs must have two path components: seq/fragment
|
||||
if(components.size() != 2) throw InvalidPathLength();
|
||||
auto seq = components[0];
|
||||
auto fragment = components[1];
|
||||
|
||||
// Parse the sequence component and the fragment, and
|
||||
// make sure they agree.
|
||||
auto [seq_num, seq_len] = parse_sequence_component(seq);
|
||||
auto cbor = Bytewords::decode(Bytewords::style::minimal, fragment);
|
||||
auto part = FountainEncoder::Part(cbor);
|
||||
if(seq_num != part.seq_num() || seq_len != part.seq_len()) return false;
|
||||
|
||||
// Process the part
|
||||
if(!fountain_decoder.receive_part(part)) return false;
|
||||
|
||||
if(fountain_decoder.is_success()) {
|
||||
result_ = UR(type, fountain_decoder.result_message());
|
||||
} else if(fountain_decoder.is_failure()) {
|
||||
result_ = fountain_decoder.result_error();
|
||||
}
|
||||
|
||||
return true;
|
||||
} catch(...) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
66
src/third-party/bcur/ur-decoder.hpp
vendored
Normal file
66
src/third-party/bcur/ur-decoder.hpp
vendored
Normal file
|
@ -0,0 +1,66 @@
|
|||
//
|
||||
// ur-decoder.hpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#ifndef BC_UR_DECODER_HPP
|
||||
#define BC_UR_DECODER_HPP
|
||||
|
||||
#include <string>
|
||||
#include <exception>
|
||||
#include <utility>
|
||||
#include <optional>
|
||||
|
||||
#include "ur.hpp"
|
||||
#include "fountain-decoder.hpp"
|
||||
|
||||
namespace ur {
|
||||
|
||||
class URDecoder final {
|
||||
public:
|
||||
typedef std::optional<std::variant<UR, std::exception> > Result;
|
||||
|
||||
class InvalidScheme: public std::exception { };
|
||||
class InvalidType: public std::exception { };
|
||||
class InvalidPathLength: public std::exception { };
|
||||
class InvalidSequenceComponent: public std::exception { };
|
||||
class InvalidFragment: public std::exception { };
|
||||
|
||||
// Decode a single-part UR.
|
||||
static UR decode(const std::string& string);
|
||||
|
||||
// Start decoding a (possibly) multi-part UR.
|
||||
URDecoder();
|
||||
|
||||
const std::optional<std::string>& expected_type() const { return expected_type_; }
|
||||
size_t expected_part_count() const { return fountain_decoder.expected_part_count(); }
|
||||
const PartIndexes& received_part_indexes() const { return fountain_decoder.received_part_indexes(); }
|
||||
const PartIndexes& last_part_indexes() const { return fountain_decoder.last_part_indexes(); }
|
||||
size_t processed_parts_count() const { return fountain_decoder.processed_parts_count(); }
|
||||
double estimated_percent_complete() const { return fountain_decoder.estimated_percent_complete(); }
|
||||
const Result& result() const { return result_; }
|
||||
bool is_success() const { return result() && std::holds_alternative<UR>(result().value()); }
|
||||
bool is_failure() const { return result() && std::holds_alternative<std::exception>(result().value()); }
|
||||
bool is_complete() const { return result().has_value(); }
|
||||
const UR& result_ur() const { return std::get<UR>(result().value()); }
|
||||
const std::exception& result_error() const { return std::get<std::exception>(result().value()); }
|
||||
|
||||
bool receive_part(const std::string& s);
|
||||
|
||||
private:
|
||||
FountainDecoder fountain_decoder;
|
||||
|
||||
std::optional<std::string> expected_type_;
|
||||
Result result_;
|
||||
|
||||
static std::pair<std::string, StringVector> parse(const std::string& string);
|
||||
static std::pair<uint32_t, size_t> parse_sequence_component(const std::string& string);
|
||||
static UR decode(const std::string& type, const std::string& body);
|
||||
bool validate_part(const std::string& type);
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // BC_UR_DECODER_HPP
|
50
src/third-party/bcur/ur-encoder.cpp
vendored
Normal file
50
src/third-party/bcur/ur-encoder.cpp
vendored
Normal file
|
@ -0,0 +1,50 @@
|
|||
//
|
||||
// ur-encoder.cpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#include "ur-encoder.hpp"
|
||||
#include "bytewords.hpp"
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace ur {
|
||||
|
||||
string UREncoder::encode(const UR& ur) {
|
||||
auto body = Bytewords::encode(Bytewords::style::minimal, ur.cbor());
|
||||
return encode_ur({ur.type(), body});
|
||||
}
|
||||
|
||||
UREncoder::UREncoder(const UR& ur, size_t max_fragment_len, uint32_t first_seq_num, size_t min_fragment_len)
|
||||
: ur_(ur),
|
||||
fountain_encoder_(FountainEncoder(ur.cbor(), max_fragment_len, first_seq_num, min_fragment_len))
|
||||
{
|
||||
}
|
||||
|
||||
std::string UREncoder::next_part() {
|
||||
auto part = fountain_encoder_.next_part();
|
||||
if(is_single_part()) {
|
||||
return encode(ur_);
|
||||
} else {
|
||||
return encode_part(ur_.type(), part);
|
||||
}
|
||||
}
|
||||
|
||||
string UREncoder::encode_part(const string& type, const FountainEncoder::Part& part) {
|
||||
auto seq = to_string(part.seq_num()) + "-" + to_string(part.seq_len());
|
||||
auto body = Bytewords::encode(Bytewords::style::minimal, part.cbor());
|
||||
return encode_ur({type, seq, body});
|
||||
}
|
||||
|
||||
string UREncoder::encode_uri(const string& scheme, const StringVector& path_components) {
|
||||
auto path = join(path_components, "/");
|
||||
return join({scheme, path}, ":");
|
||||
}
|
||||
|
||||
string UREncoder::encode_ur(const StringVector& path_components) {
|
||||
return encode_uri("ur", path_components);
|
||||
}
|
||||
|
||||
}
|
52
src/third-party/bcur/ur-encoder.hpp
vendored
Normal file
52
src/third-party/bcur/ur-encoder.hpp
vendored
Normal file
|
@ -0,0 +1,52 @@
|
|||
//
|
||||
// ur-encoder.hpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#ifndef BC_UR_ENCODER_HPP
|
||||
#define BC_UR_ENCODER_HPP
|
||||
|
||||
#include <string>
|
||||
#include "ur.hpp"
|
||||
#include "utils.hpp"
|
||||
#include "fountain-encoder.hpp"
|
||||
|
||||
namespace ur {
|
||||
|
||||
class UREncoder final {
|
||||
public:
|
||||
// Encode a single-part UR.
|
||||
static std::string encode(const UR& ur);
|
||||
|
||||
// Start encoding a (possibly) multi-part UR.
|
||||
UREncoder(const UR& ur, size_t max_fragment_len, uint32_t first_seq_num = 0, size_t min_fragment_len = 10);
|
||||
|
||||
uint32_t seq_num() const { return fountain_encoder_.seq_num(); }
|
||||
size_t seq_len() const { return fountain_encoder_.seq_len(); }
|
||||
PartIndexes last_part_indexes() const { return fountain_encoder_.last_part_indexes(); }
|
||||
|
||||
// `true` if the minimal number of parts to transmit the message have been
|
||||
// generated. Parts generated when this is `true` will be fountain codes
|
||||
// containing various mixes of the part data.
|
||||
bool is_complete() const { return fountain_encoder_.is_complete(); }
|
||||
|
||||
// `true` if this UR can be contained in a single part. If `true`, repeated
|
||||
// calls to `next_part()` will all return the same single-part UR.
|
||||
bool is_single_part() const { return fountain_encoder_.is_single_part(); }
|
||||
|
||||
std::string next_part();
|
||||
|
||||
private:
|
||||
UR ur_;
|
||||
FountainEncoder fountain_encoder_;
|
||||
|
||||
static std::string encode_part(const std::string& type, const FountainEncoder::Part& part);
|
||||
static std::string encode_uri(const std::string& scheme, const StringVector& path_components);
|
||||
static std::string encode_ur(const StringVector& path_components);
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // BC_UR_ENCODER_HPP
|
28
src/third-party/bcur/ur.cpp
vendored
Normal file
28
src/third-party/bcur/ur.cpp
vendored
Normal file
|
@ -0,0 +1,28 @@
|
|||
//
|
||||
// ur.cpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#include "ur.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace ur {
|
||||
|
||||
UR::UR(const std::string &type, const ByteVector &cbor)
|
||||
: type_(type), cbor_(cbor)
|
||||
{
|
||||
if (!is_ur_type(type)) {
|
||||
throw invalid_type();
|
||||
}
|
||||
}
|
||||
|
||||
bool operator==(const UR& lhs, const UR& rhs) {
|
||||
return lhs.type() == rhs.type() && lhs.cbor() == rhs.cbor();
|
||||
}
|
||||
|
||||
} // namespace ur
|
34
src/third-party/bcur/ur.hpp
vendored
Normal file
34
src/third-party/bcur/ur.hpp
vendored
Normal file
|
@ -0,0 +1,34 @@
|
|||
//
|
||||
// ur.hpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#ifndef BC_UR_UR_HPP
|
||||
#define BC_UR_UR_HPP
|
||||
|
||||
#include <string>
|
||||
#include <exception>
|
||||
#include "utils.hpp"
|
||||
|
||||
namespace ur {
|
||||
|
||||
class UR final {
|
||||
private:
|
||||
std::string type_;
|
||||
ByteVector cbor_;
|
||||
public:
|
||||
class invalid_type: public std::exception { };
|
||||
|
||||
const std::string& type() const { return type_; }
|
||||
const ByteVector& cbor() const { return cbor_; }
|
||||
|
||||
UR(const std::string& type, const ByteVector& cbor);
|
||||
};
|
||||
|
||||
bool operator==(const UR& lhs, const UR& rhs);
|
||||
|
||||
}
|
||||
|
||||
#endif // BC_UR_UR_HPP
|
171
src/third-party/bcur/utils.cpp
vendored
Normal file
171
src/third-party/bcur/utils.cpp
vendored
Normal file
|
@ -0,0 +1,171 @@
|
|||
//
|
||||
// utils.cpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#include "utils.hpp"
|
||||
|
||||
extern "C" {
|
||||
|
||||
#include "sha2.h"
|
||||
#include "crc32.h"
|
||||
|
||||
}
|
||||
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
#include <algorithm>
|
||||
#include <cctype>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace ur {
|
||||
|
||||
ByteVector sha256(const ByteVector &buf) {
|
||||
uint8_t digest[SHA256_DIGEST_LENGTH];
|
||||
sha256_Raw(&buf[0], buf.size(), digest);
|
||||
return ByteVector(digest, digest + SHA256_DIGEST_LENGTH);
|
||||
}
|
||||
|
||||
ByteVector crc32_bytes(const ByteVector &buf) {
|
||||
uint32_t checksum = ur_crc32n(&buf[0], buf.size());
|
||||
auto cbegin = (uint8_t*)&checksum;
|
||||
auto cend = cbegin + sizeof(uint32_t);
|
||||
return ByteVector(cbegin, cend);
|
||||
}
|
||||
|
||||
uint32_t crc32_int(const ByteVector &buf) {
|
||||
return ur_crc32(&buf[0], buf.size());
|
||||
}
|
||||
|
||||
ByteVector string_to_bytes(const string& s) {
|
||||
return ByteVector(s.begin(), s.end());
|
||||
}
|
||||
|
||||
string data_to_hex(const ByteVector& in) {
|
||||
auto hex = "0123456789abcdef";
|
||||
string result;
|
||||
for(auto c: in) {
|
||||
result.append(1, hex[(c >> 4) & 0xF]);
|
||||
result.append(1, hex[c & 0xF]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
string data_to_hex(uint32_t n) {
|
||||
return data_to_hex(int_to_bytes(n));
|
||||
}
|
||||
|
||||
ByteVector int_to_bytes(uint32_t n) {
|
||||
ByteVector b;
|
||||
b.reserve(4);
|
||||
b.push_back((n >> 24 & 0xff));
|
||||
b.push_back((n >> 16) & 0xff);
|
||||
b.push_back((n >> 8) & 0xff);
|
||||
b.push_back(n & 0xff);
|
||||
return b;
|
||||
}
|
||||
|
||||
uint32_t bytes_to_int(const ByteVector& in) {
|
||||
assert(in.size() >= 4);
|
||||
uint32_t result = 0;
|
||||
result |= in[0] << 24;
|
||||
result |= in[1] << 16;
|
||||
result |= in[2] << 8;
|
||||
result |= in[3];
|
||||
return result;
|
||||
}
|
||||
|
||||
string join(const StringVector &strings, const string &separator) {
|
||||
ostringstream result;
|
||||
bool first = true;
|
||||
for(auto s: strings) {
|
||||
if(!first) {
|
||||
result << separator;
|
||||
}
|
||||
result << s;
|
||||
first = false;
|
||||
}
|
||||
return result.str();
|
||||
}
|
||||
|
||||
StringVector split(const string& s, char separator) {
|
||||
StringVector result;
|
||||
string buf;
|
||||
|
||||
for(auto c: s) {
|
||||
if(c != separator) {
|
||||
buf += c;
|
||||
} else if(c == separator && buf.length() > 0) {
|
||||
result.push_back(buf);
|
||||
buf = "";
|
||||
}
|
||||
}
|
||||
|
||||
if(buf != "") {
|
||||
result.push_back(buf);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
StringVector partition(const string& s, size_t size) {
|
||||
StringVector result;
|
||||
auto remaining = s;
|
||||
while(remaining.length() > 0) {
|
||||
result.push_back(take_first(remaining, size));
|
||||
remaining = drop_first(remaining, size);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
string take_first(const string &s, size_t count) {
|
||||
auto first = s.begin();
|
||||
auto c = min(s.size(), count);
|
||||
auto last = first + c;
|
||||
return string(first, last);
|
||||
}
|
||||
|
||||
string drop_first(const string& s, size_t count) {
|
||||
if(count >= s.length()) { return ""; }
|
||||
return string(s.begin() + count, s.end());
|
||||
}
|
||||
|
||||
void xor_into(ByteVector& target, const ByteVector& source) {
|
||||
auto count = target.size();
|
||||
assert(count == source.size());
|
||||
for(int i = 0; i < count; i++) {
|
||||
target[i] ^= source[i];
|
||||
}
|
||||
}
|
||||
|
||||
ByteVector xor_with(const ByteVector& a, const ByteVector& b) {
|
||||
auto target = a;
|
||||
xor_into(target, b);
|
||||
return target;
|
||||
}
|
||||
|
||||
bool is_ur_type(char c) {
|
||||
if('a' <= c && c <= 'z') return true;
|
||||
if('0' <= c && c <= '9') return true;
|
||||
if(c == '-') return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool is_ur_type(const string& s) {
|
||||
return none_of(s.begin(), s.end(), [](auto c) { return !is_ur_type(c); });
|
||||
}
|
||||
|
||||
string to_lowercase(const string& s) {
|
||||
string result;
|
||||
transform(s.begin(), s.end(), back_inserter(result), [](char c){ return tolower(c); });
|
||||
return result;
|
||||
}
|
||||
|
||||
bool has_prefix(const string& s, const string& prefix) {
|
||||
return s.rfind(prefix, 0) == 0;
|
||||
}
|
||||
|
||||
}
|
89
src/third-party/bcur/utils.hpp
vendored
Normal file
89
src/third-party/bcur/utils.hpp
vendored
Normal file
|
@ -0,0 +1,89 @@
|
|||
//
|
||||
// utils.hpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#ifndef UTILS_HPP
|
||||
#define UTILS_HPP
|
||||
|
||||
#include <stdint.h>
|
||||
#include <vector>
|
||||
#include <utility>
|
||||
#include <string>
|
||||
#include <array>
|
||||
#include <assert.h>
|
||||
|
||||
namespace ur {
|
||||
|
||||
typedef std::vector<uint8_t> ByteVector;
|
||||
typedef std::vector<std::string> StringVector;
|
||||
|
||||
ByteVector sha256(const ByteVector &buf);
|
||||
ByteVector crc32_bytes(const ByteVector &buf);
|
||||
uint32_t crc32_int(const ByteVector &buf);
|
||||
|
||||
ByteVector string_to_bytes(const std::string& s);
|
||||
|
||||
std::string data_to_hex(const ByteVector& in);
|
||||
std::string data_to_hex(uint32_t n);
|
||||
|
||||
ByteVector int_to_bytes(uint32_t n);
|
||||
uint32_t bytes_to_int(const ByteVector& in);
|
||||
|
||||
std::string join(const StringVector &strings, const std::string &separator);
|
||||
StringVector split(const std::string& s, char separator);
|
||||
|
||||
StringVector partition(const std::string& string, size_t size);
|
||||
|
||||
std::string take_first(const std::string &s, size_t count);
|
||||
std::string drop_first(const std::string &s, size_t count);
|
||||
|
||||
template<typename T>
|
||||
void append(std::vector<T>& target, const std::vector<T>& source) {
|
||||
target.insert(target.end(), source.begin(), source.end());
|
||||
}
|
||||
|
||||
template<typename T, size_t N>
|
||||
void append(std::vector<T>& target, const std::array<T, N>& source) {
|
||||
target.insert(target.end(), source.begin(), source.end());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
std::vector<T> join(const std::vector<std::vector<T>>& parts) {
|
||||
std::vector<T> result;
|
||||
for(auto part: parts) { append(result, part); }
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
std::pair<std::vector<T>, std::vector<T>> split(const std::vector<T>& buf, size_t count) {
|
||||
auto first = buf.begin();
|
||||
auto c = std::min(buf.size(), count);
|
||||
auto last = first + c;
|
||||
auto a = std::vector(first, last);
|
||||
auto b = std::vector(last, buf.end());
|
||||
return std::make_pair(a, b);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
std::vector<T> take_first(const std::vector<T> &buf, size_t count) {
|
||||
auto first = buf.begin();
|
||||
auto c = std::min(buf.size(), count);
|
||||
auto last = first + c;
|
||||
return std::vector(first, last);
|
||||
}
|
||||
|
||||
void xor_into(ByteVector& target, const ByteVector& source);
|
||||
ByteVector xor_with(const ByteVector& a, const ByteVector& b);
|
||||
|
||||
bool is_ur_type(char c);
|
||||
bool is_ur_type(const std::string& s);
|
||||
|
||||
std::string to_lowercase(const std::string& s);
|
||||
bool has_prefix(const std::string& s, const std::string& prefix);
|
||||
|
||||
}
|
||||
|
||||
#endif // UTILS_HPP
|
177
src/third-party/bcur/xoshiro256.cpp
vendored
Normal file
177
src/third-party/bcur/xoshiro256.cpp
vendored
Normal file
|
@ -0,0 +1,177 @@
|
|||
//
|
||||
// xoshiro256.cpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#include "xoshiro256.hpp"
|
||||
#include <limits>
|
||||
#include <cstring>
|
||||
|
||||
/* Written in 2018 by David Blackman and Sebastiano Vigna (vigna@acm.org)
|
||||
|
||||
To the extent possible under law, the author has dedicated all copyright
|
||||
and related and neighboring rights to this software to the public domain
|
||||
worldwide. This software is distributed without any warranty.
|
||||
|
||||
See <http://creativecommons.org/publicdomain/zero/1.0/>. */
|
||||
|
||||
/* This is xoshiro256** 1.0, one of our all-purpose, rock-solid
|
||||
generators. It has excellent (sub-ns) speed, a state (256 bits) that is
|
||||
large enough for any parallel application, and it passes all tests we
|
||||
are aware of.
|
||||
|
||||
For generating just floating-point numbers, xoshiro256+ is even faster.
|
||||
|
||||
The state must be seeded so that it is not everywhere zero. If you have
|
||||
a 64-bit seed, we suggest to seed a splitmix64 generator and use its
|
||||
output to fill s. */
|
||||
|
||||
namespace ur {
|
||||
|
||||
static inline uint64_t rotl(const uint64_t x, int k) {
|
||||
return (x << k) | (x >> (64 - k));
|
||||
}
|
||||
|
||||
Xoshiro256::Xoshiro256(const std::array<uint64_t, 4>& a) {
|
||||
s[0] = a[0];
|
||||
s[1] = a[1];
|
||||
s[2] = a[2];
|
||||
s[3] = a[3];
|
||||
}
|
||||
|
||||
void Xoshiro256::set_s(const std::array<uint8_t, 32>& a) {
|
||||
for(int i = 0; i < 4; i++) {
|
||||
auto o = i * 8;
|
||||
uint64_t v = 0;
|
||||
for(int n = 0; n < 8; n++) {
|
||||
v <<= 8;
|
||||
v |= a[o + n];
|
||||
}
|
||||
s[i] = v;
|
||||
}
|
||||
}
|
||||
|
||||
void Xoshiro256::hash_then_set_s(const ByteVector& bytes) {
|
||||
auto digest = sha256(bytes);
|
||||
std::array<uint8_t, 32> a;
|
||||
memcpy(a.data(), &digest[0], 32);
|
||||
set_s(a);
|
||||
}
|
||||
|
||||
Xoshiro256::Xoshiro256(const std::array<uint8_t, 32>& a) {
|
||||
set_s(a);
|
||||
}
|
||||
|
||||
Xoshiro256::Xoshiro256(const ByteVector& bytes) {
|
||||
hash_then_set_s(bytes);
|
||||
}
|
||||
|
||||
Xoshiro256::Xoshiro256(const std::string& s) {
|
||||
ByteVector bytes(s.begin(), s.end());
|
||||
hash_then_set_s(bytes);
|
||||
}
|
||||
|
||||
Xoshiro256::Xoshiro256(uint32_t crc32) {
|
||||
auto bytes = int_to_bytes(crc32);
|
||||
hash_then_set_s(bytes);
|
||||
}
|
||||
|
||||
double Xoshiro256::next_double() {
|
||||
auto m = ((double)std::numeric_limits<uint64_t>::max()) + 1;
|
||||
return next() / m;
|
||||
}
|
||||
|
||||
uint64_t Xoshiro256::next_int(uint64_t low, uint64_t high) {
|
||||
return uint64_t(next_double() * (high - low + 1)) + low;
|
||||
}
|
||||
|
||||
uint8_t Xoshiro256::next_byte() {
|
||||
return uint8_t(next_int(0, 255));
|
||||
}
|
||||
|
||||
ByteVector Xoshiro256::next_data(size_t count) {
|
||||
ByteVector result;
|
||||
result.reserve(count);
|
||||
for(int i = 0; i < count; i++) {
|
||||
result.push_back(next_byte());
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
uint64_t Xoshiro256::next() {
|
||||
const uint64_t result = rotl(s[1] * 5, 7) * 9;
|
||||
|
||||
const uint64_t t = s[1] << 17;
|
||||
|
||||
s[2] ^= s[0];
|
||||
s[3] ^= s[1];
|
||||
s[1] ^= s[2];
|
||||
s[0] ^= s[3];
|
||||
|
||||
s[2] ^= t;
|
||||
|
||||
s[3] = rotl(s[3], 45);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* This is the jump function for the generator. It is equivalent
|
||||
to 2^128 calls to next(); it can be used to generate 2^128
|
||||
non-overlapping subsequences for parallel computations. */
|
||||
|
||||
void Xoshiro256::jump() {
|
||||
static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba, 0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };
|
||||
|
||||
uint64_t s0 = 0;
|
||||
uint64_t s1 = 0;
|
||||
uint64_t s2 = 0;
|
||||
uint64_t s3 = 0;
|
||||
for(int i = 0; i < sizeof JUMP / sizeof *JUMP; i++)
|
||||
for(int b = 0; b < 64; b++) {
|
||||
if (JUMP[i] & UINT64_C(1) << b) {
|
||||
s0 ^= s[0];
|
||||
s1 ^= s[1];
|
||||
s2 ^= s[2];
|
||||
s3 ^= s[3];
|
||||
}
|
||||
next();
|
||||
}
|
||||
|
||||
s[0] = s0;
|
||||
s[1] = s1;
|
||||
s[2] = s2;
|
||||
s[3] = s3;
|
||||
}
|
||||
|
||||
/* This is the long-jump function for the generator. It is equivalent to
|
||||
2^192 calls to next(); it can be used to generate 2^64 starting points,
|
||||
from each of which jump() will generate 2^64 non-overlapping
|
||||
subsequences for parallel distributed computations. */
|
||||
|
||||
void Xoshiro256::long_jump() {
|
||||
static const uint64_t LONG_JUMP[] = { 0x76e15d3efefdcbbf, 0xc5004e441c522fb3, 0x77710069854ee241, 0x39109bb02acbe635 };
|
||||
|
||||
uint64_t s0 = 0;
|
||||
uint64_t s1 = 0;
|
||||
uint64_t s2 = 0;
|
||||
uint64_t s3 = 0;
|
||||
for(int i = 0; i < sizeof LONG_JUMP / sizeof *LONG_JUMP; i++)
|
||||
for(int b = 0; b < 64; b++) {
|
||||
if (LONG_JUMP[i] & UINT64_C(1) << b) {
|
||||
s0 ^= s[0];
|
||||
s1 ^= s[1];
|
||||
s2 ^= s[2];
|
||||
s3 ^= s[3];
|
||||
}
|
||||
next();
|
||||
}
|
||||
|
||||
s[0] = s0;
|
||||
s[1] = s1;
|
||||
s[2] = s2;
|
||||
s[3] = s3;
|
||||
}
|
||||
|
||||
}
|
45
src/third-party/bcur/xoshiro256.hpp
vendored
Normal file
45
src/third-party/bcur/xoshiro256.hpp
vendored
Normal file
|
@ -0,0 +1,45 @@
|
|||
//
|
||||
// xoshiro256.hpp
|
||||
//
|
||||
// Copyright © 2020 by Blockchain Commons, LLC
|
||||
// Licensed under the "BSD-2-Clause Plus Patent License"
|
||||
//
|
||||
|
||||
#ifndef XOSHIRO256_HPP
|
||||
#define XOSHIRO256_HPP
|
||||
|
||||
#include <stdint.h>
|
||||
#include <array>
|
||||
#include <string>
|
||||
#include "utils.hpp"
|
||||
|
||||
namespace ur {
|
||||
|
||||
class Xoshiro256 {
|
||||
public:
|
||||
explicit Xoshiro256(const std::array<uint64_t, 4>& a);
|
||||
explicit Xoshiro256(const std::array<uint8_t, 32>& a);
|
||||
|
||||
explicit Xoshiro256(const ByteVector& bytes);
|
||||
explicit Xoshiro256(const std::string& s);
|
||||
explicit Xoshiro256(uint32_t crc32);
|
||||
|
||||
uint64_t next();
|
||||
double next_double();
|
||||
uint64_t next_int(uint64_t low, uint64_t high);
|
||||
uint8_t next_byte();
|
||||
ByteVector next_data(size_t count);
|
||||
|
||||
void jump();
|
||||
void long_jump();
|
||||
|
||||
private:
|
||||
uint64_t s[4];
|
||||
|
||||
void set_s(const std::array<uint8_t, 32>& a);
|
||||
void hash_then_set_s(const ByteVector& bytes);
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // XOSHIRO256_HPP
|
Loading…
Reference in a new issue