mirror of
https://github.com/Cuprate/cuprate.git
synced 2025-01-10 04:44:53 +00:00
356 lines
11 KiB
C
356 lines
11 KiB
C
// Copyright (c) 2014-2023, The Monero Project
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
|
|
/*
|
|
* The blake256_* and blake224_* functions are largely copied from
|
|
* blake256_light.c and blake224_light.c from the BLAKE website:
|
|
*
|
|
* https://131002.net/blake/
|
|
*
|
|
* The hmac_* functions implement HMAC-BLAKE-256 and HMAC-BLAKE-224.
|
|
* HMAC is specified by RFC 2104.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <memwipe.h>
|
|
#include "blake256.h"
|
|
|
|
#define U8TO32(p) \
|
|
(((uint32_t)((p)[0]) << 24) | ((uint32_t)((p)[1]) << 16) | \
|
|
((uint32_t)((p)[2]) << 8) | ((uint32_t)((p)[3]) ))
|
|
#define U32TO8(p, v) \
|
|
(p)[0] = (uint8_t)((v) >> 24); (p)[1] = (uint8_t)((v) >> 16); \
|
|
(p)[2] = (uint8_t)((v) >> 8); (p)[3] = (uint8_t)((v) );
|
|
|
|
const uint8_t sigma[][16] = {
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15},
|
|
{14,10, 4, 8, 9,15,13, 6, 1,12, 0, 2,11, 7, 5, 3},
|
|
{11, 8,12, 0, 5, 2,15,13,10,14, 3, 6, 7, 1, 9, 4},
|
|
{ 7, 9, 3, 1,13,12,11,14, 2, 6, 5,10, 4, 0,15, 8},
|
|
{ 9, 0, 5, 7, 2, 4,10,15,14, 1,11,12, 6, 8, 3,13},
|
|
{ 2,12, 6,10, 0,11, 8, 3, 4,13, 7, 5,15,14, 1, 9},
|
|
{12, 5, 1,15,14,13, 4,10, 0, 7, 6, 3, 9, 2, 8,11},
|
|
{13,11, 7,14,12, 1, 3, 9, 5, 0,15, 4, 8, 6, 2,10},
|
|
{ 6,15,14, 9,11, 3, 0, 8,12, 2,13, 7, 1, 4,10, 5},
|
|
{10, 2, 8, 4, 7, 6, 1, 5,15,11, 9,14, 3,12,13, 0},
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15},
|
|
{14,10, 4, 8, 9,15,13, 6, 1,12, 0, 2,11, 7, 5, 3},
|
|
{11, 8,12, 0, 5, 2,15,13,10,14, 3, 6, 7, 1, 9, 4},
|
|
{ 7, 9, 3, 1,13,12,11,14, 2, 6, 5,10, 4, 0,15, 8}
|
|
};
|
|
|
|
const uint32_t cst[16] = {
|
|
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344,
|
|
0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89,
|
|
0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C,
|
|
0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917
|
|
};
|
|
|
|
static const uint8_t padding[] = {
|
|
0x80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
|
|
};
|
|
|
|
|
|
void blake256_compress(state *S, const uint8_t *block) {
|
|
uint32_t v[16], m[16], i;
|
|
|
|
#define ROT(x,n) (((x)<<(32-n))|((x)>>(n)))
|
|
#define G(a,b,c,d,e) \
|
|
v[a] += (m[sigma[i][e]] ^ cst[sigma[i][e+1]]) + v[b]; \
|
|
v[d] = ROT(v[d] ^ v[a],16); \
|
|
v[c] += v[d]; \
|
|
v[b] = ROT(v[b] ^ v[c],12); \
|
|
v[a] += (m[sigma[i][e+1]] ^ cst[sigma[i][e]])+v[b]; \
|
|
v[d] = ROT(v[d] ^ v[a], 8); \
|
|
v[c] += v[d]; \
|
|
v[b] = ROT(v[b] ^ v[c], 7);
|
|
|
|
for (i = 0; i < 16; ++i) m[i] = U8TO32(block + i * 4);
|
|
for (i = 0; i < 8; ++i) v[i] = S->h[i];
|
|
v[ 8] = S->s[0] ^ 0x243F6A88;
|
|
v[ 9] = S->s[1] ^ 0x85A308D3;
|
|
v[10] = S->s[2] ^ 0x13198A2E;
|
|
v[11] = S->s[3] ^ 0x03707344;
|
|
v[12] = 0xA4093822;
|
|
v[13] = 0x299F31D0;
|
|
v[14] = 0x082EFA98;
|
|
v[15] = 0xEC4E6C89;
|
|
|
|
if (S->nullt == 0) {
|
|
v[12] ^= S->t[0];
|
|
v[13] ^= S->t[0];
|
|
v[14] ^= S->t[1];
|
|
v[15] ^= S->t[1];
|
|
}
|
|
|
|
for (i = 0; i < 14; ++i) {
|
|
G(0, 4, 8, 12, 0);
|
|
G(1, 5, 9, 13, 2);
|
|
G(2, 6, 10, 14, 4);
|
|
G(3, 7, 11, 15, 6);
|
|
G(3, 4, 9, 14, 14);
|
|
G(2, 7, 8, 13, 12);
|
|
G(0, 5, 10, 15, 8);
|
|
G(1, 6, 11, 12, 10);
|
|
}
|
|
|
|
for (i = 0; i < 16; ++i) S->h[i % 8] ^= v[i];
|
|
for (i = 0; i < 8; ++i) S->h[i] ^= S->s[i % 4];
|
|
}
|
|
|
|
void blake256_init(state *S) {
|
|
S->h[0] = 0x6A09E667;
|
|
S->h[1] = 0xBB67AE85;
|
|
S->h[2] = 0x3C6EF372;
|
|
S->h[3] = 0xA54FF53A;
|
|
S->h[4] = 0x510E527F;
|
|
S->h[5] = 0x9B05688C;
|
|
S->h[6] = 0x1F83D9AB;
|
|
S->h[7] = 0x5BE0CD19;
|
|
S->t[0] = S->t[1] = S->buflen = S->nullt = 0;
|
|
S->s[0] = S->s[1] = S->s[2] = S->s[3] = 0;
|
|
}
|
|
|
|
void blake224_init(state *S) {
|
|
S->h[0] = 0xC1059ED8;
|
|
S->h[1] = 0x367CD507;
|
|
S->h[2] = 0x3070DD17;
|
|
S->h[3] = 0xF70E5939;
|
|
S->h[4] = 0xFFC00B31;
|
|
S->h[5] = 0x68581511;
|
|
S->h[6] = 0x64F98FA7;
|
|
S->h[7] = 0xBEFA4FA4;
|
|
S->t[0] = S->t[1] = S->buflen = S->nullt = 0;
|
|
S->s[0] = S->s[1] = S->s[2] = S->s[3] = 0;
|
|
}
|
|
|
|
// datalen = number of bits
|
|
void blake256_update(state *S, const uint8_t *data, uint64_t datalen) {
|
|
int left = S->buflen >> 3;
|
|
int fill = 64 - left;
|
|
|
|
if (left && (((datalen >> 3)) >= (unsigned) fill)) {
|
|
memcpy((void *) (S->buf + left), (void *) data, fill);
|
|
S->t[0] += 512;
|
|
if (S->t[0] == 0) S->t[1]++;
|
|
blake256_compress(S, S->buf);
|
|
data += fill;
|
|
datalen -= (fill << 3);
|
|
left = 0;
|
|
}
|
|
|
|
while (datalen >= 512) {
|
|
S->t[0] += 512;
|
|
if (S->t[0] == 0) S->t[1]++;
|
|
blake256_compress(S, data);
|
|
data += 64;
|
|
datalen -= 512;
|
|
}
|
|
|
|
if (datalen > 0) {
|
|
memcpy((void *) (S->buf + left), (void *) data, datalen >> 3);
|
|
S->buflen = (left << 3) + datalen;
|
|
} else {
|
|
S->buflen = 0;
|
|
}
|
|
}
|
|
|
|
// datalen = number of bits
|
|
void blake224_update(state *S, const uint8_t *data, uint64_t datalen) {
|
|
blake256_update(S, data, datalen);
|
|
}
|
|
|
|
void blake256_final_h(state *S, uint8_t *digest, uint8_t pa, uint8_t pb) {
|
|
uint8_t msglen[8];
|
|
uint32_t lo = S->t[0] + S->buflen, hi = S->t[1];
|
|
if (lo < (unsigned) S->buflen) hi++;
|
|
U32TO8(msglen + 0, hi);
|
|
U32TO8(msglen + 4, lo);
|
|
|
|
if (S->buflen == 440) { /* one padding byte */
|
|
S->t[0] -= 8;
|
|
blake256_update(S, &pa, 8);
|
|
} else {
|
|
if (S->buflen < 440) { /* enough space to fill the block */
|
|
if (S->buflen == 0) S->nullt = 1;
|
|
S->t[0] -= 440 - S->buflen;
|
|
blake256_update(S, padding, 440 - S->buflen);
|
|
} else { /* need 2 compressions */
|
|
S->t[0] -= 512 - S->buflen;
|
|
blake256_update(S, padding, 512 - S->buflen);
|
|
S->t[0] -= 440;
|
|
blake256_update(S, padding + 1, 440);
|
|
S->nullt = 1;
|
|
}
|
|
blake256_update(S, &pb, 8);
|
|
S->t[0] -= 8;
|
|
}
|
|
S->t[0] -= 64;
|
|
blake256_update(S, msglen, 64);
|
|
|
|
U32TO8(digest + 0, S->h[0]);
|
|
U32TO8(digest + 4, S->h[1]);
|
|
U32TO8(digest + 8, S->h[2]);
|
|
U32TO8(digest + 12, S->h[3]);
|
|
U32TO8(digest + 16, S->h[4]);
|
|
U32TO8(digest + 20, S->h[5]);
|
|
U32TO8(digest + 24, S->h[6]);
|
|
U32TO8(digest + 28, S->h[7]);
|
|
}
|
|
|
|
void blake256_final(state *S, uint8_t *digest) {
|
|
blake256_final_h(S, digest, 0x81, 0x01);
|
|
}
|
|
|
|
void blake224_final(state *S, uint8_t *digest) {
|
|
blake256_final_h(S, digest, 0x80, 0x00);
|
|
}
|
|
|
|
// inlen = number of bytes
|
|
void blake256_hash(uint8_t *out, const uint8_t *in, uint64_t inlen) {
|
|
state S;
|
|
blake256_init(&S);
|
|
blake256_update(&S, in, inlen * 8);
|
|
blake256_final(&S, out);
|
|
}
|
|
|
|
// inlen = number of bytes
|
|
void blake224_hash(uint8_t *out, const uint8_t *in, uint64_t inlen) {
|
|
state S;
|
|
blake224_init(&S);
|
|
blake224_update(&S, in, inlen * 8);
|
|
blake224_final(&S, out);
|
|
}
|
|
|
|
// keylen = number of bytes
|
|
void hmac_blake256_init(hmac_state *S, const uint8_t *_key, uint64_t keylen) {
|
|
const uint8_t *key = _key;
|
|
uint8_t keyhash[32];
|
|
uint8_t pad[64];
|
|
uint64_t i;
|
|
|
|
if (keylen > 64) {
|
|
blake256_hash(keyhash, key, keylen);
|
|
key = keyhash;
|
|
keylen = 32;
|
|
}
|
|
|
|
blake256_init(&S->inner);
|
|
memset(pad, 0x36, 64);
|
|
for (i = 0; i < keylen; ++i) {
|
|
pad[i] ^= key[i];
|
|
}
|
|
blake256_update(&S->inner, pad, 512);
|
|
|
|
blake256_init(&S->outer);
|
|
memset(pad, 0x5c, 64);
|
|
for (i = 0; i < keylen; ++i) {
|
|
pad[i] ^= key[i];
|
|
}
|
|
blake256_update(&S->outer, pad, 512);
|
|
|
|
memwipe(keyhash, sizeof(keyhash));
|
|
}
|
|
|
|
// keylen = number of bytes
|
|
void hmac_blake224_init(hmac_state *S, const uint8_t *_key, uint64_t keylen) {
|
|
const uint8_t *key = _key;
|
|
uint8_t keyhash[32];
|
|
uint8_t pad[64];
|
|
uint64_t i;
|
|
|
|
if (keylen > 64) {
|
|
blake256_hash(keyhash, key, keylen);
|
|
key = keyhash;
|
|
keylen = 28;
|
|
}
|
|
|
|
blake224_init(&S->inner);
|
|
memset(pad, 0x36, 64);
|
|
for (i = 0; i < keylen; ++i) {
|
|
pad[i] ^= key[i];
|
|
}
|
|
blake224_update(&S->inner, pad, 512);
|
|
|
|
blake224_init(&S->outer);
|
|
memset(pad, 0x5c, 64);
|
|
for (i = 0; i < keylen; ++i) {
|
|
pad[i] ^= key[i];
|
|
}
|
|
blake224_update(&S->outer, pad, 512);
|
|
|
|
memwipe(keyhash, sizeof(keyhash));
|
|
}
|
|
|
|
// datalen = number of bits
|
|
void hmac_blake256_update(hmac_state *S, const uint8_t *data, uint64_t datalen) {
|
|
// update the inner state
|
|
blake256_update(&S->inner, data, datalen);
|
|
}
|
|
|
|
// datalen = number of bits
|
|
void hmac_blake224_update(hmac_state *S, const uint8_t *data, uint64_t datalen) {
|
|
// update the inner state
|
|
blake224_update(&S->inner, data, datalen);
|
|
}
|
|
|
|
void hmac_blake256_final(hmac_state *S, uint8_t *digest) {
|
|
uint8_t ihash[32];
|
|
blake256_final(&S->inner, ihash);
|
|
blake256_update(&S->outer, ihash, 256);
|
|
blake256_final(&S->outer, digest);
|
|
memwipe(ihash, sizeof(ihash));
|
|
}
|
|
|
|
void hmac_blake224_final(hmac_state *S, uint8_t *digest) {
|
|
uint8_t ihash[32];
|
|
blake224_final(&S->inner, ihash);
|
|
blake224_update(&S->outer, ihash, 224);
|
|
blake224_final(&S->outer, digest);
|
|
memwipe(ihash, sizeof(ihash));
|
|
}
|
|
|
|
// keylen = number of bytes; inlen = number of bytes
|
|
void hmac_blake256_hash(uint8_t *out, const uint8_t *key, uint64_t keylen, const uint8_t *in, uint64_t inlen) {
|
|
hmac_state S;
|
|
hmac_blake256_init(&S, key, keylen);
|
|
hmac_blake256_update(&S, in, inlen * 8);
|
|
hmac_blake256_final(&S, out);
|
|
}
|
|
|
|
// keylen = number of bytes; inlen = number of bytes
|
|
void hmac_blake224_hash(uint8_t *out, const uint8_t *key, uint64_t keylen, const uint8_t *in, uint64_t inlen) {
|
|
hmac_state S;
|
|
hmac_blake224_init(&S, key, keylen);
|
|
hmac_blake224_update(&S, in, inlen * 8);
|
|
hmac_blake224_final(&S, out);
|
|
}
|