cuprate/storage/database/src/resize.rs
hinto-janai aeb070ae8d
Replace OnceLock + fn with LazyLock (#256)
* `consensus/`

* `helper/`

* `test-utils/`

* `storage/`

* fix docs + tests + lints

* decomposed_amount: remove `LazyLock`

* clippy
2024-08-20 22:53:32 +01:00

300 lines
9.8 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Database memory map resizing algorithms.
//!
//! This modules contains [`ResizeAlgorithm`] which determines how the
//! [`ConcreteEnv`](crate::ConcreteEnv) resizes its memory map when needing more space.
//! This value is in [`Config`](crate::config::Config) and can be selected at runtime.
//!
//! Although, it is only used by `ConcreteEnv` if [`Env::MANUAL_RESIZE`](crate::env::Env::MANUAL_RESIZE) is `true`.
//!
//! The algorithms are available as free functions in this module as well.
//!
//! # Page size
//! All free functions in this module will
//! return a multiple of the OS page size ([`PAGE_SIZE`]),
//! [LMDB will error](http://www.lmdb.tech/doc/group__mdb.html#gaa2506ec8dab3d969b0e609cd82e619e5)
//! if this is not the case.
//!
//! # Invariants
//! All returned [`NonZeroUsize`] values of the free functions in this module
//! (including [`ResizeAlgorithm::resize`]) uphold the following invariants:
//! 1. It will always be `>=` the input `current_size_bytes`
//! 2. It will always be a multiple of [`PAGE_SIZE`]
//---------------------------------------------------------------------------------------------------- Import
use std::{num::NonZeroUsize, sync::LazyLock};
//---------------------------------------------------------------------------------------------------- ResizeAlgorithm
/// The function/algorithm used by the
/// database when resizing the memory map.
///
// # SOMEDAY
// We could test around with different algorithms.
// Calling `heed::Env::resize` is surprisingly fast,
// around `0.0000082s` on my machine. We could probably
// get away with smaller and more frequent resizes.
// **With the caveat being we are taking a `WriteGuard` to a `RwLock`.**
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum ResizeAlgorithm {
/// Uses [`monero`].
Monero,
/// Uses [`fixed_bytes`].
FixedBytes(NonZeroUsize),
/// Uses [`percent`].
Percent(f32),
}
impl ResizeAlgorithm {
/// Returns [`Self::Monero`].
///
/// ```rust
/// # use cuprate_database::resize::*;
/// assert!(matches!(ResizeAlgorithm::new(), ResizeAlgorithm::Monero));
/// ```
#[inline]
pub const fn new() -> Self {
Self::Monero
}
/// Maps the `self` variant to the free functions in [`crate::resize`].
///
/// This function returns the _new_ memory map size in bytes.
#[inline]
pub fn resize(&self, current_size_bytes: usize) -> NonZeroUsize {
match self {
Self::Monero => monero(current_size_bytes),
Self::FixedBytes(add_bytes) => fixed_bytes(current_size_bytes, add_bytes.get()),
Self::Percent(f) => percent(current_size_bytes, *f),
}
}
}
impl Default for ResizeAlgorithm {
/// Calls [`Self::new`].
///
/// ```rust
/// # use cuprate_database::resize::*;
/// assert_eq!(ResizeAlgorithm::new(), ResizeAlgorithm::default());
/// ```
#[inline]
fn default() -> Self {
Self::new()
}
}
//---------------------------------------------------------------------------------------------------- Free functions
/// This retrieves the systems memory page size.
///
/// It is just [`page_size::get`](https://docs.rs/page_size) internally.
///
/// # Panics
/// Accessing this [`LazyLock`] will panic if the OS returns of page size of `0` (impossible?).
pub static PAGE_SIZE: LazyLock<NonZeroUsize> =
LazyLock::new(|| NonZeroUsize::new(page_size::get()).expect("page_size::get() returned 0"));
/// Memory map resize closely matching `monerod`.
///
/// # Method
/// This function mostly matches `monerod`'s current resize implementation[^1],
/// and will increase `current_size_bytes` by `1 << 30`[^2] exactly then
/// rounded to the nearest multiple of the OS page size.
///
/// [^1]: <https://github.com/monero-project/monero/blob/059028a30a8ae9752338a7897329fe8012a310d5/src/blockchain_db/lmdb/db_lmdb.cpp#L549>
///
/// [^2]: `1_073_745_920`
///
/// ```rust
/// # use cuprate_database::resize::*;
/// // The value this function will increment by
/// // (assuming page multiple of 4096).
/// const N: usize = 1_073_741_824;
///
/// // 0 returns the minimum value.
/// assert_eq!(monero(0).get(), N);
///
/// // Rounds up to nearest OS page size.
/// assert_eq!(monero(1).get(), N + PAGE_SIZE.get());
/// ```
///
/// # Panics
/// This function will panic if adding onto `current_size_bytes` overflows [`usize::MAX`].
///
/// ```rust,should_panic
/// # use cuprate_database::resize::*;
/// // Ridiculous large numbers panic.
/// monero(usize::MAX);
/// ```
pub fn monero(current_size_bytes: usize) -> NonZeroUsize {
/// The exact expression used by `monerod`
/// when calculating how many bytes to add.
///
/// The nominal value is `1_073_741_824`.
/// Not actually 1 GB but close enough I guess.
///
/// <https://github.com/monero-project/monero/blob/059028a30a8ae9752338a7897329fe8012a310d5/src/blockchain_db/lmdb/db_lmdb.cpp#L553>
const ADD_SIZE: usize = 1_usize << 30;
let page_size = PAGE_SIZE.get();
let new_size_bytes = current_size_bytes + ADD_SIZE;
// Round up the new size to the
// nearest multiple of the OS page size.
let remainder = new_size_bytes % page_size;
// INVARIANT: minimum is always at least `ADD_SIZE`.
NonZeroUsize::new(if remainder == 0 {
new_size_bytes
} else {
(new_size_bytes + page_size) - remainder
})
.unwrap()
}
/// Memory map resize by a fixed amount of bytes.
///
/// # Method
/// This function will `current_size_bytes + add_bytes`
/// and then round up to nearest OS page size.
///
/// ```rust
/// # use cuprate_database::resize::*;
/// let page_size: usize = PAGE_SIZE.get();
///
/// // Anything below the page size will round up to the page size.
/// for i in 0..=page_size {
/// assert_eq!(fixed_bytes(0, i).get(), page_size);
/// }
///
/// // (page_size + 1) will round up to (page_size * 2).
/// assert_eq!(fixed_bytes(page_size, 1).get(), page_size * 2);
///
/// // (page_size + page_size) doesn't require any rounding.
/// assert_eq!(fixed_bytes(page_size, page_size).get(), page_size * 2);
/// ```
///
/// # Panics
/// This function will panic if adding onto `current_size_bytes` overflows [`usize::MAX`].
///
/// ```rust,should_panic
/// # use cuprate_database::resize::*;
/// // Ridiculous large numbers panic.
/// fixed_bytes(1, usize::MAX);
/// ```
pub fn fixed_bytes(current_size_bytes: usize, add_bytes: usize) -> NonZeroUsize {
let page_size = *PAGE_SIZE;
let new_size_bytes = current_size_bytes + add_bytes;
// Guard against < page_size.
if new_size_bytes <= page_size.get() {
return page_size;
}
// Round up the new size to the
// nearest multiple of the OS page size.
let remainder = new_size_bytes % page_size;
// INVARIANT: we guarded against < page_size above.
NonZeroUsize::new(if remainder == 0 {
new_size_bytes
} else {
(new_size_bytes + page_size.get()) - remainder
})
.unwrap()
}
/// Memory map resize by a percentage.
///
/// # Method
/// This function will multiply `current_size_bytes` by `percent`.
///
/// Any input `<= 1.0` or non-normal float ([`f32::NAN`], [`f32::INFINITY`])
/// will make the returning `NonZeroUsize` the same as `current_size_bytes`
/// (rounded up to the OS page size).
///
/// ```rust
/// # use cuprate_database::resize::*;
/// let page_size: usize = PAGE_SIZE.get();
///
/// // Anything below the page size will round up to the page size.
/// for i in 0..=page_size {
/// assert_eq!(percent(i, 1.0).get(), page_size);
/// }
///
/// // Same for 2 page sizes.
/// for i in (page_size + 1)..=(page_size * 2) {
/// assert_eq!(percent(i, 1.0).get(), page_size * 2);
/// }
///
/// // Weird floats do nothing.
/// assert_eq!(percent(page_size, f32::NAN).get(), page_size);
/// assert_eq!(percent(page_size, f32::INFINITY).get(), page_size);
/// assert_eq!(percent(page_size, f32::NEG_INFINITY).get(), page_size);
/// assert_eq!(percent(page_size, -1.0).get(), page_size);
/// assert_eq!(percent(page_size, 0.999).get(), page_size);
/// ```
///
/// # Panics
/// This function will panic if `current_size_bytes * percent`
/// is closer to [`usize::MAX`] than the OS page size.
///
/// ```rust,should_panic
/// # use cuprate_database::resize::*;
/// // Ridiculous large numbers panic.
/// percent(usize::MAX, 1.001);
/// ```
pub fn percent(current_size_bytes: usize, percent: f32) -> NonZeroUsize {
// Guard against bad floats.
use std::num::FpCategory;
let percent = match percent.classify() {
FpCategory::Normal => {
if percent <= 1.0 {
1.0
} else {
percent
}
}
_ => 1.0,
};
let page_size = *PAGE_SIZE;
// INVARIANT: Allow `f32` <-> `usize` casting, we handle all cases.
#[allow(
clippy::cast_possible_truncation,
clippy::cast_sign_loss,
clippy::cast_precision_loss
)]
let new_size_bytes = ((current_size_bytes as f32) * percent) as usize;
// Panic if rounding up to the nearest page size would overflow.
let new_size_bytes = if new_size_bytes > (usize::MAX - page_size.get()) {
panic!("new_size_bytes is percent() near usize::MAX");
} else {
new_size_bytes
};
// Guard against < page_size.
if new_size_bytes <= page_size.get() {
return page_size;
}
// Round up the new size to the
// nearest multiple of the OS page size.
let remainder = new_size_bytes % page_size;
// INVARIANT: we guarded against < page_size above.
NonZeroUsize::new(if remainder == 0 {
new_size_bytes
} else {
(new_size_bytes + page_size.get()) - remainder
})
.unwrap()
}
//---------------------------------------------------------------------------------------------------- Tests
#[cfg(test)]
mod test {
// use super::*;
}