dandelion++ lib (#111)

* init D++

* init D++ router

* working D++ router

* add test

* D++ tx pool

* add more txpool docs

* add a txpool builder

* add tracing

* add more docs

* fix doc

* reduce test epoch (windows CI fail)

* generate first state in config

Windows seems to not allows taking a big value from an instant

* extend tests

* clippy

* review comments + more docs

* Apply suggestions from code review

Co-authored-by: hinto-janai <hinto.janai@protonmail.com>

* update Cargo.lock

* rename txpool.rs -> pool.rs

* review comments

* Update p2p/dandelion/src/tests/router.rs

Co-authored-by: hinto-janai <hinto.janai@protonmail.com>

* Update p2p/dandelion/src/router.rs

Co-authored-by: hinto-janai <hinto.janai@protonmail.com>

---------

Co-authored-by: hinto-janai <hinto.janai@protonmail.com>
This commit is contained in:
Boog900 2024-05-05 19:22:41 +00:00 committed by GitHub
parent 10d327ca13
commit 75306babf8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 1579 additions and 0 deletions

15
Cargo.lock generated
View file

@ -656,6 +656,21 @@ dependencies = [
"zeroize", "zeroize",
] ]
[[package]]
name = "dandelion_tower"
version = "0.1.0"
dependencies = [
"futures",
"proptest",
"rand",
"rand_distr",
"thiserror",
"tokio",
"tokio-util",
"tower",
"tracing",
]
[[package]] [[package]]
name = "diff" name = "diff"
version = "0.1.13" version = "0.1.13"

View file

@ -11,6 +11,7 @@ members = [
"net/fixed-bytes", "net/fixed-bytes",
"net/levin", "net/levin",
"net/monero-wire", "net/monero-wire",
"p2p/dandelion",
"p2p/monero-p2p", "p2p/monero-p2p",
"p2p/address-book", "p2p/address-book",
"pruning", "pruning",
@ -60,6 +61,7 @@ paste = { version = "1.0.14", default-features = false }
pin-project = { version = "1.1.3", default-features = false } pin-project = { version = "1.1.3", default-features = false }
randomx-rs = { git = "https://github.com/Cuprate/randomx-rs.git", rev = "0028464", default-features = false } randomx-rs = { git = "https://github.com/Cuprate/randomx-rs.git", rev = "0028464", default-features = false }
rand = { version = "0.8.5", default-features = false } rand = { version = "0.8.5", default-features = false }
rand_distr = { version = "0.4.3", default-features = false }
rayon = { version = "1.9.0", default-features = false } rayon = { version = "1.9.0", default-features = false }
serde_bytes = { version = "0.11.12", default-features = false } serde_bytes = { version = "0.11.12", default-features = false }
serde_json = { version = "1.0.108", default-features = false } serde_json = { version = "1.0.108", default-features = false }

27
p2p/dandelion/Cargo.toml Normal file
View file

@ -0,0 +1,27 @@
[package]
name = "dandelion_tower"
version = "0.1.0"
edition = "2021"
license = "MIT"
authors = ["Boog900"]
[features]
default = ["txpool"]
txpool = ["dep:rand_distr", "dep:tokio-util", "dep:tokio"]
[dependencies]
tower = { workspace = true, features = ["discover", "util"] }
tracing = { workspace = true, features = ["std"] }
futures = { workspace = true, features = ["std"] }
tokio = { workspace = true, features = ["rt", "sync", "macros"], optional = true}
tokio-util = { workspace = true, features = ["time"], optional = true }
rand = { workspace = true, features = ["std", "std_rng"] }
rand_distr = { workspace = true, features = ["std"], optional = true }
thiserror = { workspace = true }
[dev-dependencies]
tokio = { workspace = true, features = ["rt-multi-thread", "macros", "sync"] }
proptest = { workspace = true, features = ["default"] }

149
p2p/dandelion/src/config.rs Normal file
View file

@ -0,0 +1,149 @@
use std::{
ops::{Mul, Neg},
time::Duration,
};
/// When calculating the embargo timeout using the formula: `(-k*(k-1)*hop)/(2*log(1-ep))`
///
/// (1 - ep) is the probability that a transaction travels for `k` hops before a nodes embargo timeout fires, this constant is (1 - ep).
const EMBARGO_FULL_TRAVEL_PROBABILITY: f64 = 0.90;
/// The graph type to use for dandelion routing, the dandelion paper recommends [Graph::FourRegular].
///
/// The decision between line graphs and 4-regular graphs depend on the priorities of the system, if
/// linkability of transactions is a first order concern then line graphs may be better, however 4-regular graphs
/// can give constant-order privacy benefits against adversaries with knowledge of the graph.
///
/// See appendix C of the dandelion++ paper.
#[derive(Default, Debug, Copy, Clone)]
pub enum Graph {
/// Line graph.
///
/// When this is selected one peer will be chosen from the outbound peers each epoch to route transactions
/// to.
///
/// In general this is not recommend over [`Graph::FourRegular`] but may be better for certain systems.
Line,
/// Quasi-4-Regular.
///
/// When this is selected two peers will be chosen from the outbound peers each epoch, each stem transaction
/// received will then be sent to one of these two peers. Transactions from the same node will always go to the
/// same peer.
#[default]
FourRegular,
}
/// The config used to initialize dandelion.
///
/// One notable missing item from the config is `Tbase` AKA the timeout parameter to prevent black hole
/// attacks. This is removed from the config for simplicity, `Tbase` is calculated using the formula provided
/// in the D++ paper:
///
/// `(-k*(k-1)*hop)/(2*log(1-ep))`
///
/// Where `k` is calculated from the fluff probability, `hop` is `time_between_hop` and `ep` is fixed at `0.1`.
///
#[derive(Debug, Clone, Copy)]
pub struct DandelionConfig {
/// The time it takes for a stem transaction to pass through a node, including network latency.
///
/// It's better to be safe and put a slightly higher value than lower.
pub time_between_hop: Duration,
/// The duration of an epoch.
pub epoch_duration: Duration,
/// `q` in the dandelion paper, this is the probability that a node will be in the fluff state for
/// a certain epoch.
///
/// The dandelion paper recommends to make this value small, but the smaller this value, the higher
/// the broadcast latency.
///
/// It is recommended for this value to be <= `0.2`, this value *MUST* be in range `0.0..=1.0`.
pub fluff_probability: f64,
/// The graph type.
pub graph: Graph,
}
impl DandelionConfig {
/// Returns the number of outbound peers to use to stem transactions.
///
/// This value depends on the [`Graph`] chosen.
pub fn number_of_stems(&self) -> usize {
match self.graph {
Graph::Line => 1,
Graph::FourRegular => 2,
}
}
/// Returns the average embargo timeout, `Tbase` in the dandelion++ paper.
///
/// This is the average embargo timeout _only including this node_ with `k` nodes also putting an embargo timeout
/// using the exponential distribution, the average until one of them fluffs is `Tbase / k`.
pub fn average_embargo_timeout(&self) -> Duration {
// we set k equal to the expected stem length with this fluff probability.
let k = self.expected_stem_length();
let time_between_hop = self.time_between_hop.as_secs_f64();
Duration::from_secs_f64(
// (-k*(k-1)*hop)/(2*ln(1-ep))
((k.neg() * (k - 1.0) * time_between_hop)
/ EMBARGO_FULL_TRAVEL_PROBABILITY.ln().mul(2.0))
.ceil(),
)
}
/// Returns the expected length of a stem.
pub fn expected_stem_length(&self) -> f64 {
self.fluff_probability.recip()
}
}
#[cfg(test)]
mod tests {
use std::{
f64::consts::E,
ops::{Mul, Neg},
time::Duration,
};
use proptest::{prop_assert, proptest};
use super::*;
#[test]
fn monerod_average_embargo_timeout() {
let cfg = DandelionConfig {
time_between_hop: Duration::from_millis(175),
epoch_duration: Default::default(),
fluff_probability: 0.125,
graph: Default::default(),
};
assert_eq!(cfg.average_embargo_timeout(), Duration::from_secs(47));
}
proptest! {
#[test]
fn embargo_full_travel_probablity_correct(time_between_hop in 1_u64..1_000_000, fluff_probability in 0.000001..1.0) {
let cfg = DandelionConfig {
time_between_hop: Duration::from_millis(time_between_hop),
epoch_duration: Default::default(),
fluff_probability,
graph: Default::default(),
};
// assert that the `average_embargo_timeout` is high enough that the probability of `k` nodes
// not diffusing before expected diffusion is greater than or equal to `EMBARGO_FULL_TRAVEL_PROBABLY`
//
// using the formula from in appendix B.5
let k = cfg.expected_stem_length();
let time_between_hop = cfg.time_between_hop.as_secs_f64();
let average_embargo_timeout = cfg.average_embargo_timeout().as_secs_f64();
let probability =
E.powf((k.neg() * (k - 1.0) * time_between_hop) / average_embargo_timeout.mul(2.0));
prop_assert!(probability >= EMBARGO_FULL_TRAVEL_PROBABILITY, "probability = {probability}, average_embargo_timeout = {average_embargo_timeout}");
}
}
}

70
p2p/dandelion/src/lib.rs Normal file
View file

@ -0,0 +1,70 @@
//! # Dandelion Tower
//!
//! This crate implements [dandelion++](https://arxiv.org/pdf/1805.11060.pdf), using [`tower`].
//!
//! This crate provides 2 [`tower::Service`]s, a [`DandelionRouter`] and a [`DandelionPool`](pool::DandelionPool).
//! The router is pretty minimal and only handles the absolute necessary data to route transactions, whereas the
//! pool keeps track of all data necessary for dandelion++ but requires you to provide a backing tx-pool.
//!
//! This split was done not because the [`DandelionPool`](pool::DandelionPool) is unnecessary but because it is hard
//! to cover a wide range of projects when abstracting over the tx-pool. Not using the [`DandelionPool`](pool::DandelionPool)
//! requires you to implement part of the paper yourself.
//!
//! # Features
//!
//! This crate only has one feature `txpool` which enables [`DandelionPool`](pool::DandelionPool).
//!
//! # Needed Services
//!
//! To use this crate you need to provide a few types.
//!
//! ## Diffuse Service
//!
//! This service should implement diffusion, which is sending the transaction to every peer, with each peer
//! having a timer using the exponential distribution and batch sending all txs that were queued in that time.
//!
//! The diffuse service should have a request of [`DiffuseRequest`](traits::DiffuseRequest) and it's error
//! should be [`tower::BoxError`].
//!
//! ## Outbound Peer Discoverer
//!
//! The outbound peer [`Discover`](tower::discover::Discover) should provide a stream of randomly selected outbound
//! peers, these peers will then be used to route stem txs to.
//!
//! The peers will not be returned anywhere, so it is recommended to wrap them in some sort of drop guard that returns
//! them back to a peer set.
//!
//! ## Peer Service
//!
//! This service represents a connection to an individual peer, this should be returned from the Outbound Peer
//! Discover. This should immediately send the transaction to the peer when requested, i.e. it should _not_ set
//! a timer.
//!
//! The diffuse service should have a request of [`StemRequest`](traits::StemRequest) and it's error
//! should be [`tower::BoxError`].
//!
//! ## Backing Pool
//!
//! ([`DandelionPool`](pool::DandelionPool) only)
//!
//! This service is a backing tx-pool, in memory or on disk.
//! The backing pool should have a request of [`TxStoreRequest`](traits::TxStoreRequest) and a response of
//! [`TxStoreResponse`](traits::TxStoreResponse), with an error of [`tower::BoxError`].
//!
//! Users should keep a handle to the backing pool to request data from it, when requesting data you _must_
//! make sure you only look in the public pool if you are going to be giving data to peers, as stem transactions
//! must stay private.
//!
//! When removing data, for example because of a new block, you can remove from both pools provided it doesn't leak
//! any data about stem transactions. You will probably want to set up a task that monitors the tx pool for stuck transactions,
//! transactions that slipped in just as one was removed etc, this crate does not handle that.
mod config;
#[cfg(feature = "txpool")]
pub mod pool;
mod router;
#[cfg(test)]
mod tests;
pub mod traits;
pub use config::*;
pub use router::*;

510
p2p/dandelion/src/pool.rs Normal file
View file

@ -0,0 +1,510 @@
//! # Dandelion++ Pool
//!
//! This module contains [`DandelionPool`] which is a thin wrapper around a backing transaction store,
//! which fully implements the dandelion++ protocol.
//!
//! ### How To Get Txs From [`DandelionPool`].
//!
//! [`DandelionPool`] does not provide a full tx-pool API. You cannot retrieve transactions from it or
//! check what transactions are in it, to do this you must keep a handle to the backing transaction store
//! yourself.
//!
//! The reason for this is, the [`DandelionPool`] will only itself be passing these requests onto the backing
//! pool, so it makes sense to remove the "middle man".
//!
//! ### Keep Stem Transactions Hidden
//!
//! When using your handle to the backing store it must be remembered to keep transactions in the stem pool hidden.
//! So handle any requests to the tx-pool like the stem side of the pool does not exist.
//!
use std::{
collections::{HashMap, HashSet},
future::Future,
hash::Hash,
marker::PhantomData,
pin::Pin,
task::{Context, Poll},
time::Duration,
};
use futures::{FutureExt, StreamExt};
use rand::prelude::*;
use rand_distr::Exp;
use tokio::{
sync::{mpsc, oneshot},
task::JoinSet,
};
use tokio_util::{sync::PollSender, time::DelayQueue};
use tower::{Service, ServiceExt};
use tracing::Instrument;
use crate::{
traits::{TxStoreRequest, TxStoreResponse},
DandelionConfig, DandelionRouteReq, DandelionRouterError, State, TxState,
};
/// Start the [`DandelionPool`].
///
/// This function spawns the [`DandelionPool`] and returns [`DandelionPoolService`] which can be used to send
/// requests to the pool.
///
/// ### Args
///
/// - `buffer_size` is the size of the channel's buffer between the [`DandelionPoolService`] and [`DandelionPool`].
/// - `dandelion_router` is the router service, kept generic instead of [`DandelionRouter`](crate::DandelionRouter) to allow
/// user to customise routing functionality.
/// - `backing_pool` is the backing transaction storage service
/// - `config` is [`DandelionConfig`].
pub fn start_dandelion_pool<P, R, Tx, TxID, PID>(
buffer_size: usize,
dandelion_router: R,
backing_pool: P,
config: DandelionConfig,
) -> DandelionPoolService<Tx, TxID, PID>
where
Tx: Clone + Send + 'static,
TxID: Hash + Eq + Clone + Send + 'static,
PID: Hash + Eq + Clone + Send + 'static,
P: Service<
TxStoreRequest<Tx, TxID>,
Response = TxStoreResponse<Tx, TxID>,
Error = tower::BoxError,
> + Send
+ 'static,
P::Future: Send + 'static,
R: Service<DandelionRouteReq<Tx, PID>, Response = State, Error = DandelionRouterError>
+ Send
+ 'static,
R::Future: Send + 'static,
{
let (tx, rx) = mpsc::channel(buffer_size);
let pool = DandelionPool {
dandelion_router,
backing_pool,
routing_set: JoinSet::new(),
stem_origins: HashMap::new(),
embargo_timers: DelayQueue::new(),
embargo_dist: Exp::new(1.0 / config.average_embargo_timeout().as_secs_f64()).unwrap(),
config,
_tx: PhantomData,
};
let span = tracing::debug_span!("dandelion_pool");
tokio::spawn(pool.run(rx).instrument(span));
DandelionPoolService {
tx: PollSender::new(tx),
}
}
#[derive(Copy, Clone, Debug, thiserror::Error)]
#[error("The dandelion pool was shutdown")]
pub struct DandelionPoolShutDown;
/// An incoming transaction for the [`DandelionPool`] to handle.
///
/// Users may notice there is no way to check if the dandelion-pool wants a tx according to an inventory message like seen
/// in Bitcoin, only having a request for a full tx. Users should look in the *public* backing pool to handle inv messages,
/// and request txs even if they are in the stem pool.
pub struct IncomingTx<Tx, TxID, PID> {
/// The transaction.
///
/// It is recommended to put this in an [`Arc`](std::sync::Arc) as it needs to be cloned to send to the backing
/// tx pool and [`DandelionRouter`](crate::DandelionRouter)
pub tx: Tx,
/// The transaction ID.
pub tx_id: TxID,
/// The routing state of this transaction.
pub tx_state: TxState<PID>,
}
/// The dandelion tx pool service.
#[derive(Clone)]
pub struct DandelionPoolService<Tx, TxID, PID> {
/// The channel to [`DandelionPool`].
tx: PollSender<(IncomingTx<Tx, TxID, PID>, oneshot::Sender<()>)>,
}
impl<Tx, TxID, PID> Service<IncomingTx<Tx, TxID, PID>> for DandelionPoolService<Tx, TxID, PID>
where
Tx: Clone + Send,
TxID: Hash + Eq + Clone + Send + 'static,
PID: Hash + Eq + Clone + Send + 'static,
{
type Response = ();
type Error = DandelionPoolShutDown;
type Future =
Pin<Box<dyn Future<Output = Result<Self::Response, Self::Error>> + Send + 'static>>;
fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.tx.poll_reserve(cx).map_err(|_| DandelionPoolShutDown)
}
fn call(&mut self, req: IncomingTx<Tx, TxID, PID>) -> Self::Future {
// although the channel isn't sending anything we want to wait for the request to be handled before continuing.
let (tx, rx) = oneshot::channel();
let res = self
.tx
.send_item((req, tx))
.map_err(|_| DandelionPoolShutDown);
async move {
res?;
rx.await.expect("Oneshot dropped before response!");
Ok(())
}
.boxed()
}
}
/// The dandelion++ tx pool.
///
/// See the [module docs](self) for more.
pub struct DandelionPool<P, R, Tx, TxID, PID> {
/// The dandelion++ router
dandelion_router: R,
/// The backing tx storage.
backing_pool: P,
/// The set of tasks that are running the future returned from `dandelion_router`.
routing_set: JoinSet<(TxID, Result<State, TxState<PID>>)>,
/// The origin of stem transactions.
stem_origins: HashMap<TxID, HashSet<PID>>,
/// Current stem pool embargo timers.
embargo_timers: DelayQueue<TxID>,
/// The distrobution to sample to get embargo timers.
embargo_dist: Exp<f64>,
/// The d++ config.
config: DandelionConfig,
_tx: PhantomData<Tx>,
}
impl<P, R, Tx, TxID, PID> DandelionPool<P, R, Tx, TxID, PID>
where
Tx: Clone + Send,
TxID: Hash + Eq + Clone + Send + 'static,
PID: Hash + Eq + Clone + Send + 'static,
P: Service<
TxStoreRequest<Tx, TxID>,
Response = TxStoreResponse<Tx, TxID>,
Error = tower::BoxError,
>,
P::Future: Send + 'static,
R: Service<DandelionRouteReq<Tx, PID>, Response = State, Error = DandelionRouterError>,
R::Future: Send + 'static,
{
/// Stores the tx in the backing pools stem pool, setting the embargo timer, stem origin and steming the tx.
async fn store_tx_and_stem(
&mut self,
tx: Tx,
tx_id: TxID,
from: Option<PID>,
) -> Result<(), tower::BoxError> {
self.backing_pool
.ready()
.await?
.call(TxStoreRequest::Store(
tx.clone(),
tx_id.clone(),
State::Stem,
))
.await?;
let embargo_timer = self.embargo_dist.sample(&mut thread_rng());
tracing::debug!(
"Setting embargo timer for stem tx: {} seconds.",
embargo_timer
);
self.embargo_timers
.insert(tx_id.clone(), Duration::from_secs_f64(embargo_timer));
self.stem_tx(tx, tx_id, from).await
}
/// Stems the tx, setting the stem origin, if it wasn't already set.
///
/// This function does not add the tx to the backing pool.
async fn stem_tx(
&mut self,
tx: Tx,
tx_id: TxID,
from: Option<PID>,
) -> Result<(), tower::BoxError> {
if let Some(peer) = &from {
self.stem_origins
.entry(tx_id.clone())
.or_default()
.insert(peer.clone());
}
let state = from
.map(|from| TxState::Stem { from })
.unwrap_or(TxState::Local);
let fut = self
.dandelion_router
.ready()
.await?
.call(DandelionRouteReq {
tx,
state: state.clone(),
});
self.routing_set
.spawn(fut.map(|res| (tx_id, res.map_err(|_| state))));
Ok(())
}
/// Stores the tx in the backing pool and fluffs the tx, removing the stem data for this tx.
async fn store_and_fluff_tx(&mut self, tx: Tx, tx_id: TxID) -> Result<(), tower::BoxError> {
// fluffs the tx first to prevent timing attacks where we could fluff at different average times
// depending on if the tx was in the stem pool already or not.
// Massively overkill but this is a minimal change.
self.fluff_tx(tx.clone(), tx_id.clone()).await?;
// Remove the tx from the maps used during the stem phase.
self.stem_origins.remove(&tx_id);
self.backing_pool
.ready()
.await?
.call(TxStoreRequest::Store(tx, tx_id, State::Fluff))
.await?;
// The key for this is *Not* the tx_id, it is given on insert, so just keep the timer in the
// map. These timers should be relatively short, so it shouldn't be a problem.
//self.embargo_timers.try_remove(&tx_id);
Ok(())
}
/// Fluffs a tx, does not add the tx to the tx pool.
async fn fluff_tx(&mut self, tx: Tx, tx_id: TxID) -> Result<(), tower::BoxError> {
let fut = self
.dandelion_router
.ready()
.await?
.call(DandelionRouteReq {
tx,
state: TxState::Fluff,
});
self.routing_set
.spawn(fut.map(|res| (tx_id, res.map_err(|_| TxState::Fluff))));
Ok(())
}
/// Function to handle an incoming [`DandelionPoolRequest::IncomingTx`].
async fn handle_incoming_tx(
&mut self,
tx: Tx,
tx_state: TxState<PID>,
tx_id: TxID,
) -> Result<(), tower::BoxError> {
let TxStoreResponse::Contains(have_tx) = self
.backing_pool
.ready()
.await?
.call(TxStoreRequest::Contains(tx_id.clone()))
.await?
else {
panic!("Backing tx pool responded with wrong response for request.");
};
// If we have already fluffed this tx then we don't need to do anything.
if have_tx == Some(State::Fluff) {
tracing::debug!("Already fluffed incoming tx, ignoring.");
return Ok(());
}
match tx_state {
TxState::Stem { from } => {
if self
.stem_origins
.get(&tx_id)
.is_some_and(|peers| peers.contains(&from))
{
tracing::debug!("Received stem tx twice from same peer, fluffing it");
// The same peer sent us a tx twice, fluff it.
self.promote_and_fluff_tx(tx_id).await
} else {
// This could be a new tx or it could have already been stemed, but we still stem it again
// unless the same peer sends us a tx twice.
tracing::debug!("Steming incoming tx");
self.store_tx_and_stem(tx, tx_id, Some(from)).await
}
}
TxState::Fluff => {
tracing::debug!("Fluffing incoming tx");
self.store_and_fluff_tx(tx, tx_id).await
}
TxState::Local => {
// If we have already stemed this tx then nothing to do.
if have_tx.is_some() {
tracing::debug!("Received a local tx that we already have, skipping");
return Ok(());
}
tracing::debug!("Steming local transaction");
self.store_tx_and_stem(tx, tx_id, None).await
}
}
}
/// Promotes a tx to the clear pool.
async fn promote_tx(&mut self, tx_id: TxID) -> Result<(), tower::BoxError> {
// Remove the tx from the maps used during the stem phase.
self.stem_origins.remove(&tx_id);
// The key for this is *Not* the tx_id, it is given on insert, so just keep the timer in the
// map. These timers should be relatively short, so it shouldn't be a problem.
//self.embargo_timers.try_remove(&tx_id);
self.backing_pool
.ready()
.await?
.call(TxStoreRequest::Promote(tx_id))
.await?;
Ok(())
}
/// Promotes a tx to the public fluff pool and fluffs the tx.
async fn promote_and_fluff_tx(&mut self, tx_id: TxID) -> Result<(), tower::BoxError> {
tracing::debug!("Promoting transaction to public pool and fluffing it.");
let TxStoreResponse::Transaction(tx) = self
.backing_pool
.ready()
.await?
.call(TxStoreRequest::Get(tx_id.clone()))
.await?
else {
panic!("Backing tx pool responded with wrong response for request.");
};
let Some((tx, state)) = tx else {
tracing::debug!("Could not find tx, skipping.");
return Ok(());
};
if state == State::Fluff {
tracing::debug!("Transaction already fluffed, skipping.");
return Ok(());
}
self.promote_tx(tx_id.clone()).await?;
self.fluff_tx(tx, tx_id).await
}
/// Returns a tx stored in the fluff _OR_ stem pool.
async fn get_tx_from_pool(&mut self, tx_id: TxID) -> Result<Option<Tx>, tower::BoxError> {
let TxStoreResponse::Transaction(tx) = self
.backing_pool
.ready()
.await?
.call(TxStoreRequest::Get(tx_id))
.await?
else {
panic!("Backing tx pool responded with wrong response for request.");
};
Ok(tx.map(|tx| tx.0))
}
/// Starts the [`DandelionPool`].
async fn run(
mut self,
mut rx: mpsc::Receiver<(IncomingTx<Tx, TxID, PID>, oneshot::Sender<()>)>,
) {
tracing::debug!("Starting dandelion++ tx-pool, config: {:?}", self.config);
// On start up we just fluff all txs left in the stem pool.
let Ok(TxStoreResponse::IDs(ids)) = (&mut self.backing_pool)
.oneshot(TxStoreRequest::IDsInStemPool)
.await
else {
tracing::error!("Failed to get transactions in stem pool.");
return;
};
tracing::debug!(
"Fluffing {} txs that are currently in the stem pool",
ids.len()
);
for id in ids {
if let Err(e) = self.promote_and_fluff_tx(id).await {
tracing::error!("Failed to fluff tx in the stem pool at start up, {e}.");
return;
}
}
loop {
tracing::trace!("Waiting for next event.");
tokio::select! {
// biased to handle current txs before routing new ones.
biased;
Some(fired) = self.embargo_timers.next() => {
tracing::debug!("Embargo timer fired, did not see stem tx in time.");
let tx_id = fired.into_inner();
if let Err(e) = self.promote_and_fluff_tx(tx_id).await {
tracing::error!("Error handling fired embargo timer: {e}");
return;
}
}
Some(Ok((tx_id, res))) = self.routing_set.join_next() => {
tracing::trace!("Received d++ routing result.");
let res = match res {
Ok(State::Fluff) => {
tracing::debug!("Transaction was fluffed upgrading it to the public pool.");
self.promote_tx(tx_id).await
}
Err(tx_state) => {
tracing::debug!("Error routing transaction, trying again.");
match self.get_tx_from_pool(tx_id.clone()).await {
Ok(Some(tx)) => match tx_state {
TxState::Fluff => self.fluff_tx(tx, tx_id).await,
TxState::Stem { from } => self.stem_tx(tx, tx_id, Some(from)).await,
TxState::Local => self.stem_tx(tx, tx_id, None).await,
}
Err(e) => Err(e),
_ => continue,
}
}
Ok(State::Stem) => continue,
};
if let Err(e) = res {
tracing::error!("Error handling transaction routing return: {e}");
return;
}
}
req = rx.recv() => {
tracing::debug!("Received new tx to route.");
let Some((IncomingTx { tx, tx_state, tx_id }, res_tx)) = req else {
return;
};
if let Err(e) = self.handle_incoming_tx(tx, tx_state, tx_id).await {
let _ = res_tx.send(());
tracing::error!("Error handling transaction in dandelion pool: {e}");
return;
}
let _ = res_tx.send(());
}
}
}
}
}

348
p2p/dandelion/src/router.rs Normal file
View file

@ -0,0 +1,348 @@
//! # Dandelion++ Router
//!
//! This module contains [`DandelionRouter`] which is a [`Service`]. It that handles keeping the
//! current dandelion++ [`State`] and deciding where to send transactions based on their [`TxState`].
//!
//! ### What The Router Does Not Do
//!
//! It does not handle anything to do with keeping transactions long term, i.e. embargo timers and handling
//! loops in the stem. It is up to implementers to do this if they decide not top use [`DandelionPool`](crate::pool::DandelionPool)
//!
use std::{
collections::HashMap,
future::Future,
hash::Hash,
marker::PhantomData,
pin::Pin,
task::{ready, Context, Poll},
time::Instant,
};
use futures::TryFutureExt;
use rand::{distributions::Bernoulli, prelude::*, thread_rng};
use tower::{
discover::{Change, Discover},
Service,
};
use crate::{
traits::{DiffuseRequest, StemRequest},
DandelionConfig,
};
/// An error returned from the [`DandelionRouter`]
#[derive(thiserror::Error, Debug)]
pub enum DandelionRouterError {
/// This error is probably recoverable so the request should be retried.
#[error("Peer chosen to route stem txs to had an err: {0}.")]
PeerError(tower::BoxError),
/// The broadcast service returned an error.
#[error("Broadcast service returned an err: {0}.")]
BroadcastError(tower::BoxError),
/// The outbound peer discoverer returned an error, this is critical.
#[error("The outbound peer discoverer returned an err: {0}.")]
OutboundPeerDiscoverError(tower::BoxError),
/// The outbound peer discoverer returned [`None`].
#[error("The outbound peer discoverer exited.")]
OutboundPeerDiscoverExited,
}
/// The dandelion++ state.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum State {
/// Fluff state, in this state we are diffusing stem transactions to all peers.
Fluff,
/// Stem state, in this state we are stemming stem transactions to a single outbound peer.
Stem,
}
/// The routing state of a transaction.
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum TxState<ID> {
/// Fluff state.
Fluff,
/// Stem state.
Stem {
/// The peer who sent us this transaction's ID.
from: ID,
},
/// Local - the transaction originated from our node.
Local,
}
/// A request to route a transaction.
pub struct DandelionRouteReq<Tx, ID> {
/// The transaction.
pub tx: Tx,
/// The transaction state.
pub state: TxState<ID>,
}
/// The dandelion router service.
pub struct DandelionRouter<P, B, ID, S, Tx> {
// pub(crate) is for tests
/// A [`Discover`] where we can get outbound peers from.
outbound_peer_discover: Pin<Box<P>>,
/// A [`Service`] which handle broadcasting (diffusing) transactions.
broadcast_svc: B,
/// The current state.
current_state: State,
/// The time at which this epoch started.
epoch_start: Instant,
/// The stem our local transactions will be sent to.
local_route: Option<ID>,
/// A [`HashMap`] linking peer's IDs to IDs in `stem_peers`.
stem_routes: HashMap<ID, ID>,
/// Peers we are using for stemming.
///
/// This will contain peers, even in [`State::Fluff`] to allow us to stem [`TxState::Local`]
/// transactions.
pub(crate) stem_peers: HashMap<ID, S>,
/// The distribution to sample to get the [`State`], true is [`State::Fluff`].
state_dist: Bernoulli,
/// The config.
config: DandelionConfig,
/// The routers tracing span.
span: tracing::Span,
_tx: PhantomData<Tx>,
}
impl<Tx, ID, P, B, S> DandelionRouter<P, B, ID, S, Tx>
where
ID: Hash + Eq + Clone,
P: Discover<Key = ID, Service = S, Error = tower::BoxError>,
B: Service<DiffuseRequest<Tx>, Error = tower::BoxError>,
S: Service<StemRequest<Tx>, Error = tower::BoxError>,
{
/// Creates a new [`DandelionRouter`], with the provided services and config.
///
/// # Panics
/// This function panics if [`DandelionConfig::fluff_probability`] is not `0.0..=1.0`.
pub fn new(broadcast_svc: B, outbound_peer_discover: P, config: DandelionConfig) -> Self {
// get the current state
let state_dist = Bernoulli::new(config.fluff_probability)
.expect("Fluff probability was not between 0 and 1");
let current_state = if state_dist.sample(&mut thread_rng()) {
State::Fluff
} else {
State::Stem
};
DandelionRouter {
outbound_peer_discover: Box::pin(outbound_peer_discover),
broadcast_svc,
current_state,
epoch_start: Instant::now(),
local_route: None,
stem_routes: HashMap::new(),
stem_peers: HashMap::new(),
state_dist,
config,
span: tracing::debug_span!("dandelion_router", state = ?current_state),
_tx: PhantomData,
}
}
/// This function gets the number of outbound peers from the [`Discover`] required for the selected [`Graph`](crate::Graph).
fn poll_prepare_graph(
&mut self,
cx: &mut Context<'_>,
) -> Poll<Result<(), DandelionRouterError>> {
let peers_needed = match self.current_state {
State::Stem => self.config.number_of_stems(),
// When in the fluff state we only need one peer, the one for our txs.
State::Fluff => 1,
};
while self.stem_peers.len() < peers_needed {
match ready!(self
.outbound_peer_discover
.as_mut()
.poll_discover(cx)
.map_err(DandelionRouterError::OutboundPeerDiscoverError))
.ok_or(DandelionRouterError::OutboundPeerDiscoverExited)??
{
Change::Insert(key, svc) => {
self.stem_peers.insert(key, svc);
}
Change::Remove(key) => {
self.stem_peers.remove(&key);
}
}
}
Poll::Ready(Ok(()))
}
fn fluff_tx(&mut self, tx: Tx) -> B::Future {
self.broadcast_svc.call(DiffuseRequest(tx))
}
fn stem_tx(&mut self, tx: Tx, from: ID) -> S::Future {
loop {
let stem_route = self.stem_routes.entry(from.clone()).or_insert_with(|| {
self.stem_peers
.iter()
.choose(&mut thread_rng())
.expect("No peers in `stem_peers` was poll_ready called?")
.0
.clone()
});
let Some(peer) = self.stem_peers.get_mut(stem_route) else {
self.stem_routes.remove(&from);
continue;
};
return peer.call(StemRequest(tx));
}
}
fn stem_local_tx(&mut self, tx: Tx) -> S::Future {
loop {
let stem_route = self.local_route.get_or_insert_with(|| {
self.stem_peers
.iter()
.choose(&mut thread_rng())
.expect("No peers in `stem_peers` was poll_ready called?")
.0
.clone()
});
let Some(peer) = self.stem_peers.get_mut(stem_route) else {
self.local_route.take();
continue;
};
return peer.call(StemRequest(tx));
}
}
}
/*
## Generics ##
Tx: The tx type
ID: Peer Id type - unique identifier for nodes.
P: Peer Set discover - where we can get outbound peers from
B: Broadcast service - where we send txs to get diffused.
S: The Peer service - handles routing messages to a single node.
*/
impl<Tx, ID, P, B, S> Service<DandelionRouteReq<Tx, ID>> for DandelionRouter<P, B, ID, S, Tx>
where
ID: Hash + Eq + Clone,
P: Discover<Key = ID, Service = S, Error = tower::BoxError>,
B: Service<DiffuseRequest<Tx>, Error = tower::BoxError>,
B::Future: Send + 'static,
S: Service<StemRequest<Tx>, Error = tower::BoxError>,
S::Future: Send + 'static,
{
type Response = State;
type Error = DandelionRouterError;
type Future =
Pin<Box<dyn Future<Output = Result<Self::Response, Self::Error>> + Send + 'static>>;
fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
if self.epoch_start.elapsed() > self.config.epoch_duration {
// clear all the stem routing data.
self.stem_peers.clear();
self.stem_routes.clear();
self.local_route.take();
self.current_state = if self.state_dist.sample(&mut thread_rng()) {
State::Fluff
} else {
State::Stem
};
self.span
.record("state", format!("{:?}", self.current_state));
tracing::debug!(parent: &self.span, "Starting new d++ epoch",);
self.epoch_start = Instant::now();
}
let mut peers_pending = false;
let span = &self.span;
self.stem_peers
.retain(|_, peer_svc| match peer_svc.poll_ready(cx) {
Poll::Ready(res) => res
.inspect_err(|e| {
tracing::debug!(
parent: span,
"Peer returned an error on `poll_ready`: {e}, removing from router.",
)
})
.is_ok(),
Poll::Pending => {
// Pending peers should be kept - they have not errored yet.
peers_pending = true;
true
}
});
if peers_pending {
return Poll::Pending;
}
// now we have removed the failed peers check if we still have enough for the graph chosen.
ready!(self.poll_prepare_graph(cx)?);
ready!(self
.broadcast_svc
.poll_ready(cx)
.map_err(DandelionRouterError::BroadcastError)?);
Poll::Ready(Ok(()))
}
fn call(&mut self, req: DandelionRouteReq<Tx, ID>) -> Self::Future {
tracing::trace!(parent: &self.span, "Handling route request.");
match req.state {
TxState::Fluff => Box::pin(
self.fluff_tx(req.tx)
.map_ok(|_| State::Fluff)
.map_err(DandelionRouterError::BroadcastError),
),
TxState::Stem { from } => match self.current_state {
State::Fluff => {
tracing::debug!(parent: &self.span, "Fluffing stem tx.");
Box::pin(
self.fluff_tx(req.tx)
.map_ok(|_| State::Fluff)
.map_err(DandelionRouterError::BroadcastError),
)
}
State::Stem => {
tracing::trace!(parent: &self.span, "Steming transaction");
Box::pin(
self.stem_tx(req.tx, from)
.map_ok(|_| State::Stem)
.map_err(DandelionRouterError::PeerError),
)
}
},
TxState::Local => {
tracing::debug!(parent: &self.span, "Steming local tx.");
Box::pin(
self.stem_local_tx(req.tx)
.map_ok(|_| State::Stem)
.map_err(DandelionRouterError::PeerError),
)
}
}
}
}

View file

@ -0,0 +1,130 @@
mod pool;
mod router;
use std::{collections::HashMap, future::Future, hash::Hash, sync::Arc};
use futures::TryStreamExt;
use tokio::sync::mpsc::{self, UnboundedReceiver};
use tower::{
discover::{Discover, ServiceList},
util::service_fn,
Service, ServiceExt,
};
use crate::{
traits::{TxStoreRequest, TxStoreResponse},
State,
};
pub fn mock_discover_svc<Req: Send + 'static>() -> (
impl Discover<
Key = usize,
Service = impl Service<
Req,
Future = impl Future<Output = Result<(), tower::BoxError>> + Send + 'static,
Error = tower::BoxError,
> + Send
+ 'static,
Error = tower::BoxError,
>,
UnboundedReceiver<(u64, Req)>,
) {
let (tx, rx) = mpsc::unbounded_channel();
let discover = ServiceList::new((0..).map(move |i| {
let tx_2 = tx.clone();
service_fn(move |req| {
tx_2.send((i, req)).unwrap();
async move { Ok::<(), tower::BoxError>(()) }
})
}))
.map_err(Into::into);
(discover, rx)
}
pub fn mock_broadcast_svc<Req: Send + 'static>() -> (
impl Service<
Req,
Future = impl Future<Output = Result<(), tower::BoxError>> + Send + 'static,
Error = tower::BoxError,
> + Send
+ 'static,
UnboundedReceiver<Req>,
) {
let (tx, rx) = mpsc::unbounded_channel();
(
service_fn(move |req| {
tx.send(req).unwrap();
async move { Ok::<(), tower::BoxError>(()) }
}),
rx,
)
}
#[allow(clippy::type_complexity)] // just test code.
pub fn mock_in_memory_backing_pool<
Tx: Clone + Send + 'static,
TxID: Clone + Hash + Eq + Send + 'static,
>() -> (
impl Service<
TxStoreRequest<Tx, TxID>,
Response = TxStoreResponse<Tx, TxID>,
Future = impl Future<Output = Result<TxStoreResponse<Tx, TxID>, tower::BoxError>>
+ Send
+ 'static,
Error = tower::BoxError,
> + Send
+ 'static,
Arc<std::sync::Mutex<HashMap<TxID, (Tx, State)>>>,
) {
let txs = Arc::new(std::sync::Mutex::new(HashMap::new()));
let txs_2 = txs.clone();
(
service_fn(move |req: TxStoreRequest<Tx, TxID>| {
let txs = txs.clone();
async move {
match req {
TxStoreRequest::Store(tx, tx_id, state) => {
txs.lock().unwrap().insert(tx_id, (tx, state));
Ok(TxStoreResponse::Ok)
}
TxStoreRequest::Get(tx_id) => {
let tx_state = txs.lock().unwrap().get(&tx_id).cloned();
Ok(TxStoreResponse::Transaction(tx_state))
}
TxStoreRequest::Contains(tx_id) => Ok(TxStoreResponse::Contains(
txs.lock().unwrap().get(&tx_id).map(|res| res.1),
)),
TxStoreRequest::IDsInStemPool => {
// horribly inefficient, but it's test code :)
let ids = txs
.lock()
.unwrap()
.iter()
.filter(|(_, (_, state))| matches!(state, State::Stem))
.map(|tx| tx.0.clone())
.collect::<Vec<_>>();
Ok(TxStoreResponse::IDs(ids))
}
TxStoreRequest::Promote(tx_id) => {
let _ = txs
.lock()
.unwrap()
.get_mut(&tx_id)
.map(|tx| tx.1 = State::Fluff);
Ok(TxStoreResponse::Ok)
}
}
}
}),
txs_2,
)
}

View file

@ -0,0 +1,42 @@
use std::time::Duration;
use crate::{
pool::{start_dandelion_pool, IncomingTx},
DandelionConfig, DandelionRouter, Graph, TxState,
};
use super::*;
#[tokio::test]
async fn basic_functionality() {
let config = DandelionConfig {
time_between_hop: Duration::from_millis(175),
epoch_duration: Duration::from_secs(0), // make every poll ready change state
fluff_probability: 0.2,
graph: Graph::FourRegular,
};
let (broadcast_svc, mut broadcast_rx) = mock_broadcast_svc();
let (outbound_peer_svc, _outbound_rx) = mock_discover_svc();
let router = DandelionRouter::new(broadcast_svc, outbound_peer_svc, config);
let (pool_svc, pool) = mock_in_memory_backing_pool();
let mut pool_svc = start_dandelion_pool(15, router, pool_svc, config);
pool_svc
.ready()
.await
.unwrap()
.call(IncomingTx {
tx: 0_usize,
tx_id: 1_usize,
tx_state: TxState::Fluff,
})
.await
.unwrap();
assert!(pool.lock().unwrap().contains_key(&1));
assert!(broadcast_rx.try_recv().is_ok())
}

View file

@ -0,0 +1,237 @@
use std::time::Duration;
use tower::{Service, ServiceExt};
use crate::{DandelionConfig, DandelionRouteReq, DandelionRouter, Graph, TxState};
use super::*;
/// make sure the number of stemm peers is correct.
#[tokio::test]
async fn number_stems_correct() {
let mut config = DandelionConfig {
time_between_hop: Duration::from_millis(175),
epoch_duration: Duration::from_secs(60_000),
fluff_probability: 0.0, // we want to be in stem state
graph: Graph::FourRegular,
};
let (broadcast_svc, _broadcast_rx) = mock_broadcast_svc();
let (outbound_peer_svc, _outbound_rx) = mock_discover_svc();
let mut router = DandelionRouter::new(broadcast_svc, outbound_peer_svc, config);
const FROM_PEER: usize = 20;
// send a request to make the generic bound inference work, without specifying types.
router
.ready()
.await
.unwrap()
.call(DandelionRouteReq {
tx: 0_usize,
state: TxState::Stem { from: FROM_PEER },
})
.await
.unwrap();
assert_eq!(router.stem_peers.len(), 2); // Graph::FourRegular
config.graph = Graph::Line;
let (broadcast_svc, _broadcast_rx) = mock_broadcast_svc();
let (outbound_peer_svc, _outbound_rx) = mock_discover_svc();
let mut router = DandelionRouter::new(broadcast_svc, outbound_peer_svc, config);
// send a request to make the generic bound inference work, without specifying types.
router
.ready()
.await
.unwrap()
.call(DandelionRouteReq {
tx: 0_usize,
state: TxState::Stem { from: FROM_PEER },
})
.await
.unwrap();
assert_eq!(router.stem_peers.len(), 1); // Graph::Line
}
/// make sure a tx from the same peer goes to the same peer.
#[tokio::test]
async fn routes_consistent() {
let config = DandelionConfig {
time_between_hop: Duration::from_millis(175),
epoch_duration: Duration::from_secs(60_000),
fluff_probability: 0.0, // we want this test to always stem
graph: Graph::FourRegular,
};
let (broadcast_svc, mut broadcast_rx) = mock_broadcast_svc();
let (outbound_peer_svc, mut outbound_rx) = mock_discover_svc();
let mut router = DandelionRouter::new(broadcast_svc, outbound_peer_svc, config);
const FROM_PEER: usize = 20;
// The router will panic if it attempts to flush.
broadcast_rx.close();
for _ in 0..30 {
router
.ready()
.await
.unwrap()
.call(DandelionRouteReq {
tx: 0_usize,
state: TxState::Stem { from: FROM_PEER },
})
.await
.unwrap();
}
let mut stem_peer = None;
let mut total_txs = 0;
while let Ok((peer_id, _)) = outbound_rx.try_recv() {
let stem_peer = stem_peer.get_or_insert(peer_id);
// make sure all peer ids are the same (so the same svc got all txs).
assert_eq!(*stem_peer, peer_id);
total_txs += 1;
}
assert_eq!(total_txs, 30);
}
/// make sure local txs always stem - even in fluff state.
#[tokio::test]
async fn local_always_stem() {
let config = DandelionConfig {
time_between_hop: Duration::from_millis(175),
epoch_duration: Duration::from_secs(60_000),
fluff_probability: 1.0, // we want this test to always fluff
graph: Graph::FourRegular,
};
let (broadcast_svc, mut broadcast_rx) = mock_broadcast_svc();
let (outbound_peer_svc, mut outbound_rx) = mock_discover_svc();
let mut router = DandelionRouter::new(broadcast_svc, outbound_peer_svc, config);
// The router will panic if it attempts to flush.
broadcast_rx.close();
for _ in 0..30 {
router
.ready()
.await
.unwrap()
.call(DandelionRouteReq {
tx: 0_usize,
state: TxState::Local,
})
.await
.unwrap();
}
let mut stem_peer = None;
let mut total_txs = 0;
while let Ok((peer_id, _)) = outbound_rx.try_recv() {
let stem_peer = stem_peer.get_or_insert(peer_id);
// make sure all peer ids are the same (so the same svc got all txs).
assert_eq!(*stem_peer, peer_id);
total_txs += 1;
}
assert_eq!(total_txs, 30);
}
/// make sure local txs always stem - even in fluff state.
#[tokio::test]
async fn stem_txs_fluff_in_state_fluff() {
let config = DandelionConfig {
time_between_hop: Duration::from_millis(175),
epoch_duration: Duration::from_secs(60_000),
fluff_probability: 1.0, // we want this test to always fluff
graph: Graph::FourRegular,
};
let (broadcast_svc, mut broadcast_rx) = mock_broadcast_svc();
let (outbound_peer_svc, mut outbound_rx) = mock_discover_svc();
let mut router = DandelionRouter::new(broadcast_svc, outbound_peer_svc, config);
const FROM_PEER: usize = 20;
// The router will panic if it attempts to stem.
outbound_rx.close();
for _ in 0..30 {
router
.ready()
.await
.unwrap()
.call(DandelionRouteReq {
tx: 0_usize,
state: TxState::Stem { from: FROM_PEER },
})
.await
.unwrap();
}
let mut total_txs = 0;
while broadcast_rx.try_recv().is_ok() {
total_txs += 1;
}
assert_eq!(total_txs, 30);
}
/// make sure we get all txs sent to the router out in a stem or a fluff.
#[tokio::test]
async fn random_routing() {
let config = DandelionConfig {
time_between_hop: Duration::from_millis(175),
epoch_duration: Duration::from_secs(0), // make every poll ready change state
fluff_probability: 0.2,
graph: Graph::FourRegular,
};
let (broadcast_svc, mut broadcast_rx) = mock_broadcast_svc();
let (outbound_peer_svc, mut outbound_rx) = mock_discover_svc();
let mut router = DandelionRouter::new(broadcast_svc, outbound_peer_svc, config);
for _ in 0..3000 {
router
.ready()
.await
.unwrap()
.call(DandelionRouteReq {
tx: 0_usize,
state: TxState::Stem {
from: rand::random(),
},
})
.await
.unwrap();
}
let mut total_txs = 0;
while broadcast_rx.try_recv().is_ok() {
total_txs += 1;
}
while outbound_rx.try_recv().is_ok() {
total_txs += 1;
}
assert_eq!(total_txs, 3000);
}

View file

@ -0,0 +1,49 @@
/// A request to diffuse a transaction to all connected peers.
///
/// This crate does not handle diffusion it is left to implementers.
pub struct DiffuseRequest<Tx>(pub Tx);
/// A request sent to a single peer to stem this transaction.
pub struct StemRequest<Tx>(pub Tx);
#[cfg(feature = "txpool")]
/// A request sent to the backing transaction pool storage.
pub enum TxStoreRequest<Tx, TxID> {
/// A request to store a transaction with the ID to store it under and the pool to store it in.
///
/// If the tx is already in the pool then do nothing, unless the tx is in the stem pool then move it
/// to the fluff pool, _if this request state is fluff_.
Store(Tx, TxID, crate::State),
/// A request to retrieve a `Tx` with the given ID from the pool, should not remove that tx from the pool.
///
/// Must return [`TxStoreResponse::Transaction`]
Get(TxID),
/// Promote a transaction from the stem pool to the public pool.
///
/// If the tx is already in the fluff pool do nothing.
///
/// This should not error if the tx isn't in the pool at all.
Promote(TxID),
/// A request to check if a translation is in the pool.
///
/// Must return [`TxStoreResponse::Contains`]
Contains(TxID),
/// Returns the IDs of all the transaction in the stem pool.
///
/// Must return [`TxStoreResponse::IDs`]
IDsInStemPool,
}
#[cfg(feature = "txpool")]
/// A response sent back from the backing transaction pool.
pub enum TxStoreResponse<Tx, TxID> {
/// A generic ok response.
Ok,
/// A response containing a [`Option`] for if the transaction is in the pool (Some) or not (None) and in which pool
/// the tx is in.
Contains(Option<crate::State>),
/// A response containing a requested transaction.
Transaction(Option<(Tx, crate::State)>),
/// A list of transaction IDs.
IDs(Vec<TxID>),
}